ISRAEL JOURNAL OF MATHEMATICS 80 (1992), 1-31

RAGHUNATHAN’S CONJECTURES FOR SL(2, R)

BY

MARINA RATNER*

Department of Mathematics, University of California at Berkeley,
Berkeley, California, U.S.A. 94720

ABSTRACT
In this paper I give simple proofs of Raghunathan’s conjectures for SL(2, R).
These proofs incorporate in a simplified form some of the ideas and meth-
ods I used to prove the Raghunathan’s conjectures for general connected
Lie groups.

Introduction
The purpose of this paper is to present simple proofs of Raghunathan’s conjec-
tures for SL(2, R).

More specifically, let G be a Lie group with the Lie algebra &, " a discrete
subgroup of G and = : G — I'\G the covering projection n(g) = I'g, g € G.
The group G acts by right translations on '\G, z —» zg, 2 e T\G, g € G. A
subset A C T'\G is called homogeneous if there is x € G and a closed subgroup
H C G such that xHx! NT is a lattice in xHx™! and A = n(x)H. A Borel
probability measure p on I'\G is called algebraic if there exists ¢ € '\G and a
closed subgroup H C G such that zH is homogeneous and p is the H-invariant
Borel probability measure supported on zH.

A subgroup U C G is called unipotent if for each u € U the map Ad,, : & —
® is a unipotent linear transformation of &.

Here are the two Raghunathan’s conjectures.
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CoNJECTURE 1 (Raghunathan’s Topological Conjecture): Let G be a connected
Lie group and U a unipotent subgroup of G. Then given any lattice ' in G and
any z € T\G, the closure zU of the orbit U in T'\G is homogeneous.

CONJECTURE 2 (Raghunathan’s Measure Conjecture): Let G be a connected
Lie group and U a unipotent subgroup of G. Then given any lattice I' of G,

every ergodic U-invariant Borel probability measure on I'\G is algebraic.

In fact, Raghunathan proposed a weaker version of Conjecture 1. This version
and Conjecture 2 were stated by Dani [D1] for reductive G and by Margulis [M1,
Conjectures 2 and 3] for general G.

Conjectures 1 and 2 for nilpotent G were proved earlier by Parry [P] and
Furstenberg [F1] and for G = SL(2, R) by Hedlund [H], Furstenberg [F2] and
Dani [D1].

Recently Conjecture 1 and a stronger verison of Conjecture 2 were proved in

[R1-4]. More specifically, we proved the following theorems.

THEOREM A (Orbit closures for unipotent actions): Let G be a connected Lie
group and U a unipotent subgroup of G. Then given any latticeT' of G and any
z € T\G the closure zU of the orbit zU in T\G is homogeneous.

THEOREM B (Classification of invariant measures for unipotent actions): Let G
be a connected Lie group and U a unipotent subgroup of G. Then given any
discrete subgroup T' (not necessarily a lattice) of G, every ergodic U-invariant

Borel probability measure on T\G is algebraic.

Now let U = {u(t) = exptu: t € R}, u € & be a one-parameter subgroup of G.
A point z € T'\G is called generic for U if there exists a closed subgroup H C G
such that U C H, 7U = zH is homogencous and 1 [ f(zu(s))ds — Jova fdve
for every bounded continuous function f on I'\G, where v, denotes the H-
invariant Borel probability measure on I'\G, supported on zH. Similarly, one
defines generic points for one-generator subgroups U = {u*: k € Z} of G, u € G.

In [R4] we proved the following theorem.

THEOREM C (Uniform distribution of unipotent orbits): Let G be a connected
Lie group, T' a lattice in G and U a one-parameter or one-generator unipotent

subgroup of G. Then every point ¢ € T'\G is generic for U.

Theorem C was conjectured by Margulis in [M2, Conjectures 3 and 4]. For
G = SL(2, R) Theorem C was proved by Dani and Smillie in [DS]. Also recently
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N. Shah [Sh] proved Theorem C for semisimple G of real rank one by other
methods.
We conjecture the following version of Theorem C for arbitrary I' (not neces-

sarily lattices).

CONJECTURE D: Let G be a connected Lie group, I' a discrete subgroup of G
and U a unipotent subgroup of G. Suppose that z € T\G and zU is compact in
IP\G. Then 1) zU is homogeneous; 2) if U is a one-parameter or one-generator

subgroup of G then z is generic for U.

The purpose of this paper is to take the simplest case of G = SL(2, R) and
to demonstrate in a simplified form some of the ideas and techniques we use to
prove Theorems A, B and C. For G = SL(2, R) we consider

ofoofy acs) m anl[? ucs)

The action of U on I'\G is called the horocycle flow and the action of A on T\G
the geodesic flow. Theorems A, B, C and Conjecture D for G = SL(2, R) take
the following form.

THEOREM 1 (Orbit closures for horocycle flows): Let I' be a lattice in G =
SL(2,R) and ¢ € I'\G. Then either zU = I'\G or the orbit U = zU is

periodic.

THEOREM 2 (Classification of invariant measures for horocycle flows): Let T
be a discrete subgroup of G = SL(2,R) and pu an ergodic U-invariant Borel
probability measure on I'\G. Then either 1) ' is a lattice and p is G-invariant
or 2) p is supported on a periodic orbit of U.

THEOREM 3 (Uniform distribution of horocycle orbits): Let T' be a lattice in
G = SL(2,R). Then every point ¢ € I'\G is generic for U. Equivalently, if
z € T\G and U is not a periodic orbit, then %fot f(zu(s))ds — fI‘\G fdv for
every bounded continuous function f onT'\G, where v denotes the G-invariant

Borel probability measure on T'\G.

THEOREM 4: Let I' be a discrete subgroup of G = SL(2,R), which is not a
lattice. Suppose that z € T\G and zU is compact in I'\G. Then U =zU isa

periodic orbit.

Also we include the following theorem, proved earlier in [Sa] by other methods.
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THEOREM 5 (Equidistribution of closed horocycles): Let ' be a nonuniform lat-
tice in G = SL(2, R) and let P = {z € T\G: zU is a periodic orbit}. Then

T(z)

1
lim ——/ zu(s ds:/ dv,
12T fy T rne fdva
for every bounded continuous function f on I'\G, where z € P and T(z) > 0
denote the period of the periodic orbit zU.

The paper is organized as follows. In section 2 we give short and rather ele-
mentary proofs of Theorem 2 for lattices, Theorem 1, Theorem 5 and Theorem 3.
These proofs use in an essential way a special feature of U called “horosphericity”
of U with respect to A. This feature is not necessarily possessed by unipotent
U in general G. Because of this, the proofs in section 2 can not be extended to
general G. This obstacle is removed in sections 3 and 4, where we give different
yet still simple proofs of Theorems 3 and 2. Moreover, section 4 handles the case
of arbitrary discrete I' (not necessarily lattices). The proofs in sections 3 and
4 incorporate in a simple form some of the ideas and techniques used to prove
Theorems A, B and C in [R1-4]. Also we prove Theorem 4 in section 4. The
argument in the proof of this theorem can be used to prove Conjecture D for
semisimple G of real rank one. Sections 3 and 4 can be read independently of
section 2 and section 4 independently of section 3. We note that all our proofs
are totally different from the proofs obtained by other authors.

Finally, we point out a profound contrast in the dynamical behavior of the
horocycle and the geodesic flows on I'\SL(2, R). It was shown by Sinai [S] and
Bowen, Ruelle [BR] that there are infinitely many ergodic A-invariant Borel
probability measures all supported on I'\G, which are not algebraic. Also there
exist points € I'\G for which the closures A of geodesic orbits are not smooth
manifolds. These facts put geodesic actions in a striking contrast with the rigid

behavior of horocycle actions, given in Theorems 1, 2 and 3.

1. Preliminaries

Henceforth unless otherwise stated we shall denote by G the group SL(2, R) of all

2 x 2 real matrices with determinant 1, equipped with a left invariant Riemannian
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metric. There are the following basic one-parameter subgroups of G:

o-{un=[} {]:rea),
A={a(t)= [ e_,]:teR},

S P

These subgroups of G satisfy the following commutation relations

u(s)a(t) = a(t)u(se™?),

(1.1)
h(s)a(t) = a(t)h(se*"), s,t€R.

Let W denote the subgroup of G generated by A and H. For x € G, § > 0 define
Wi(x;6) = {xa(r)h(b): |7} < &b < 8}. It is a fact that if § > 0 is sufficiently
small then for each y € W(x; 6) and each 0 < s < 1 there is a unique a(y, s) > 0,

a(y,0) = 0 increasing in s and continuous in (y, s) such that

¥s(y) = yula(y, s)) € W(xu(s); 106).

The map 14, 0 < s <1 is a homeomorphism from W(x; §) onto a neighborhood

of xu(s) in W(xu(s), 106). Define
V(x;8,1) = [J{#:(W(x8):0< s <1}

Then
V(x;6,1) = U{ay(l): y € W(x;6)}

where
oy(1) = {yu(s): 0 <s <a(y,1)} CyU.

Fory,z € W(x; ) define

Py,2(¥s(¥)) = ¥s(z) € Yo(W(x;6)).

The map ¢y , is a diffeomorphism from oy (1) onto 0,(1). Also ¢y .(p) is C®
in (y,z,p), ¥,z € W(x;6), p € oy(1). This implies that given ¢ > 0 there is
8o = 8o(€) > 0 such that if 0 < § < & then

1] < 0.01e

(1.2) ‘ B)

My =(B)) -
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for all Borel subsets B C oy(1) and all y,z € W(x;6). Here A denotes the length
measure on YU in which A{yu(s): 0 < s <t} =tforallt>0.
For a large t > 0 let 7 = 7(t) = (In t)/2 and let
W(x;6,t) = W(xa(r),8)a(—7) = {za(r)h(b) : |r| < §,]b] < 6t71},
V(x;6,t) = V(xa(r),4,1)a(—T).

Also for y € W(x;4,t) and 0 < s <t let
a(y,s) = a(ya(r),s/t)t,
¥s(¥) = yu(a(y, s)),
oy(t) = {¥s(y): 0 < s <t} = {yu(s): 0 < s < afy,1)}.
It follows from (1.1) that
¥u(y) € W(xu(s); 104, t)

forall 0 < s <tandally € W(x;6,t). Also

Moy(t)) = a(y,t), Mox(t)) =t

and

V(x;6,t) = | J{oy(t) : y € W(x;6,1)}.
Fory,z € W(x;4,t) define py 5 : oy (t) = 04(t) by ¢y a(¥s(¥)) = %s(2), 0 < s <
t. It follows from (1.2) that if 0 < § < §g(¢) then
_AMB)
Mey,z(B))
for all Borel subsets B C ay(t), all y,z € W(x;4,t) and all ¢ > 0.

Now let f be a bounded uniformly continuous function on G. Given € > 0 let
85 = 64(¢) > 0 be such that if y,z € G and d,(y,2) < 5 then

(1.3) 1 1’ <0.01¢

|f(y) = f(z)] < 0.01e.

(Here d_ denotes the left invariant metric on G.) Define
wg(e) = 0.1min{84(¢), bo(¢C; )},

Siv0) =7 [ o), >0, yeG,
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where Cy = max{1,] f] o}. It follows from (1.3) that if 0 < § < w(e) then

(1.4) 1S5(y, a(y,t)) — S¢(z, a(z,))] < 0.1¢

for all y,z € W(x;é,t) and all ¢t > 0.

Now let T be a discrete subgroup of G and m: G — I'\G = X the covering
projection n(g) = I'g, g € G. The group G acts by right translations on X,
z—ozg,z€X,g€G.

Forz € X, x € 77 {z} let

W(z; 6,t) = n(W(x;6,t)), t>0
V(z; 6,t) = n(V(x;6,1)).

Now suppose that 7 is one-to-one on W(x;é,t). For y € W(z;é,t) define
a(y,s) = ofy,s), 0<s<t

where y = 771{y} N W(x; é,t). These notations will be used in Section 2.
For r > 0, g € G define

E(g;r) = {ga(t)UK:r < 7 < o0}

where

—siné cos@

K={r(9)=[cose sinOJ:OSQS%_}'

Let T’ be a nonuniform lattice in G. Then there are r¢ > 1, g1,...,8, € G
and 71,...,7s € I' with g7'7igi € U™ = {u(s): s < 0} i = 1,...,n such that if
we define E; = E(g;,r0), T'i = {y¥: k € 2}, T =T — {e} then X — U{m(E;): i =
1,...,n} is compact in X =T'\G and

vEi=E;, i=1...,n,

YE;NE; =0, yell-T;, i=1,...,n,
YE:NE; =0, i#j, vel,

dg (x,Tx) = dg (x,7:x), t=1,...,n, x€E,.

(1.5)
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ProrosITION 1.1: Let K = X — U{x(E;): ¢« = 1,...,n}—a compact subset of
X =T\G. If z € X and zU is not a periodic orbit, then there exists a sequence
Tn — 00 such that za(7,) € K for all n.

Proof: Suppose to the contrary that there exists 79 > 0 such that za(r) ¢ K for
all 7 > 7. Then there exists i € {1,...,n} such that xa(r) € | J{yEi: 4 € T} for
all 7 > 7, x € 77 {z}, since 7(E;) N n(Ei) =0, j # k. Because | J{yEi: vy €T}
is a disjoint union, there is Xo € 7~ '{z} such that xoa(r) € E; for all T > 7.
But this happens if and only if xq € g;AU. Hence zU is a periodic orbit. This

gives a contradiction. |

2. Finite volume homogeneous spaces of SL(2, R)

A) CLASSIFICATION OF INVARIANT MEASURES AND ORBIT CLOSURES FOR HORO-
CYCLE FLOWS.

Proof of Theorem 2 for Lattices: Let T be a lattice in G and v the G-invariant
Borel probability measure on I'\G = X. It suffices to show that if z € X and

zU is not a closed (periodic) orbit then there is a sequence t, 1 00, n — oo such
that

(2.1) St(z,tn) = fu = /deu, n — oo

for every bounded uniformly continuous function on X.

So suppose that zU is not a closed orbit. By Proposition 1.1 there exist a
compact subset K C X and a sequence 1, | oo such that za(r,) € K for all
n=1,2,... . We claim that t, = ¢?™, n =1,2,... satisfies (2.1). Indeed, let f
be as above and for a given € > 0 let wy(e) = w(e), where f is the Lift of f to
G. Since K is compact, there are 0 < § < 0.0lwg(e) and > 0 such that = is

one-to-one on W(x;4) and
"("(Vo.lcc;‘(x§ §1)))>n
for all x € 7~ (K), where

Ve(x;6,t) = | J{es(W(x;6,)):0< s <7}, 0<r<t.
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Since the action of U on (X, v) is ergodic there are o > 0 and a subset Y C X
with ¥(Y) > 1 — 0.1% such that

|S¢(y,t) — f| < 0.01e

forally € Y, t > ty. Now let ng > 1 be so big that t, > 100¢p for all n > ng and
let z,, = za(r,) € K, n > ng. Then
V(z;6,t,) = V(za; 6, 1)a(—1),
V(W(Vo_lecl-ntn(x; 6,t0)) >n, x€ 77 {z}.
This implies that
W(VO'“C!_;‘" (x;8,t))NY # 0

and hence there is y, € W(z;4,t,), n > ng such that

[S(yn, &(yn,tn)) — fu] < 0.5¢.

This gives via (1.4) that
|S(zta) — ful <e

for all n > ny. This completes the proof of the Theorem. |

Proof of Theorem 1: It follows from the proof of Theorem 2 just given that if
zU is not a closed orbit, then zU N G # @ for every open subset G C X. This
implies that zU = X. |

Note 2.1: The proof of Theorem 2 shows that if X = I'\G is compact then
S#(z,t) = f,,t — oo for all z € X. Hence the action of U on X is uniquely
ergodic. Other proofs of this fact are given in [F2], [B] and [EP]. Our proof
of the unique ergodicity of U for compact I'\G applies also to the uniformly
parametrized horocycle flow associated with the geodesic flow on the unit tangent

bundle of a compact surface of variable negative curvature. |
B) EQUIDISTRIBUTION OF CLOSED HOROCYCLES.
Proof of Theorem 5: It suffices to show that

S¢(z,T)—= f,, T—- oo

for every bounded uniformly continuous function f on X = I'\G, where T =
T(z) > 0, z € P denotes the period of the periodic orbit zU.
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Solet f and € > 0 be given and let wy(e) be as in the proof of Theorem 2. Let
0 < é§ < wy{e) be so small that 7 is one-to-one on V(z;4,1) — ¢, (W(z; §)) for
every z € G for which #(2)U is a periodic orbit of period 1. Let

n= V(W(Vo_01ecf‘ (z; J, 1)))

where V,(2;6,1) is as in the proof of Theorem 2. Since the action of U on (X, »)
is ergodic, there are tg > 1 and Y C X with v(Y) > 1 — 0.1y such that

|Ss(y,t) — fu] < 0.01¢
forally €Y, t > ty. Arguing as in the proof of Theorem 2 we conclude that
1S5(z,T) - ful <e

for all z € P with T(z) > 5tp. This completes the proof of the theorem. |

C) UNIFORM DISTRIBUTION OF HOROCYCLE ORBITS. The reader is advised
to skip this section unless he or she is particularly interested in seeing a proof
of Theorem 3 which does not use Theorem 2. (Also Lemma 2.2 below is of
independent interest.) A much better proof of Theorem 3 is given in Section 3
below.

Let T be a nonuniform lattice in G and let 7o > 1, g;, I';, E;; i =1,...,n be
as in (1.5). If rg > 0 is sufficiently large then there is p > 0 such that

{x € G:d,(x,x)<3p} Cc {yEi:y€Tl, i=1,...,n}

and if
rxu(p) € W(x;0.1p)

forsomex € E;,i=1,...,n,0<p<pandsomee#vy €&l thenqy €I;. Now
we choose 0 < d < 0.1p such that

xu(s) € E;

for all |s| < 3d and all x € E; with d_(x,I'x) <3d,i=1,...,n.
Henceforth we assume for convenience that d = 1. Now let x = g;a(t)u(s)r(f)

€ E; for some 7 and suppose that

(2.2) yxu(p) = xa(r)h(b) € W(x;é)
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forsomee #y €T, p€ Rand 0 < § < gg = 0.01. Then

u(g)r(6)u(p) = r(6)a(7)h(b)

where u(q) = a(—t)g; 'vgia(t) € U, ¢ # 0. Using this relation one can compute
that

e" =1~ gcosfsinb,
(2.3) p=—qe"" cos® 6,
b= —qe" sin’ .
This shows that if p # 0 then p > 0 if and only if ¢ < 0. Also b > 0, whenever
p>0and

(2.4) p(g,8) is decreasing in ¢ for all ¢ and all 0 < 8 < 2,
(2.5) I7(g,8)| and b = b(q, 8) are decreasing for all
—00 < ¢ < 0 and all 6 with cos8sin8 > 1/2q.

Relation (2.4) implies that if

(2:6) ¥ixu(p) € W(x;6)

for some 0 < p < 2 then

(2.7) p = min{s > 0: yxu(s) € W(x; ) for some e # vy € T'}.

Also it follows from (2.4) and (2.5) that if (2.2) holds for some 0 < p £ 2 and
cosfsinf > 1/2¢ (in particular, when 7 > 0) then (2.6) holds and hence so does
(2.7).

Now let y = xa(7)h(b) € W(x;6) and let a(y,s) > 0,0 < s < 1beasin
Section 1. Then

yu(a(y, s)) = xu(s)a(r(s))h(b(s))
where

$
oys) = e — sb’

(2.8) 7(s) = 7(y,s) =In(e” — sbe™7),
b(s) = b(y,s) = b(1 — bse™*").
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Now let 0 < § < 0.01¢¢ be fixed and suppose that (2.2) holds for some x € G,
0<p<1,e#+v €Tl and some |7|,|b| < é. Then b > 0 by (2.3). Also

Yxsu(ps) € Ps(W(x;6))

for all 0 < s < 1 and some p, > 0, pp = p, where x, = xu(s). It follows then
from (2.8) that

(2.9) 0<py=5———s+p, ps<2 for0<s<l.
e2™ — bs

Relation (2.3) shows that p; = 0 if and only if
(2.10) s=(er"—e")/b, T#0, b>0, p=351—e").
For 0 < s <1 define
Bs = Bs(x,6) = min{t > 0: yx,u(t) € p,(W(x; 6)) for some e # v € T'}.

LEMMA 2.1: Let 0 < € < 0.1¢q be given. Suppose that Sy = Bo(x,6) > 0 for
some 0 < § < €5. Then there exists 0 < sq < 1 such that

(2.11) Bs 2 %min{l,ﬂoa?}

for all s ¢ [(1 — €)so,(1+¢€)sg), 0 <s < 1.
Proof: We have

Ysx:u(fs) € 1ho(W(x;6))
for all 0 < s <1 and some e # v, € I'. Let

1

S={S€[0,1]5ﬁs<§}.

It follows from the definition of p and d that if s € S then we can assume
x; € E;, v, € T; for some: € {1,...,n}. Thenx, € E;; 0< 3, < 1,9, €T; for

all 0 < s < 1. Also we can assume that
(2.12) g 7.8 € U™

since this is so when 85, > 0 (by (2.3)) and if 8, = 0 and (2.12) does not hold,

then we can replace v, by 4;!. Then

vsxu(rs) = xa(rs)h(b,) € W(x;$6)
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for some 0 < fp <7, <1 andall s €[0,1]. Assume first that
7, <0 forall s €[0,1].
Then
ﬂa 2Ty 2 ﬂO

for all s € [0,1] by (2.9), since by, > 0. Then s¢ can be chosen arbitrary in (2.11).
Now assume that
7: >0 for some 3 € [0,1].

It follows then from (2.5) that

7%, u(ps) € Ys(W(x,9))

for all s € [0,1] and some 0 < p; <1, pg =p > fo > 0. Then

Ys = Yis Bs = ps

for all s € [0,1] by (2.7). Write 7, =7 >0,0, =0>0. If b =0 then 7 =0 and
Bs = By for all s by (2.3) and (2.9). Then sg can be chosen arbitrary in (2.11). So
assume that b > 0 and let 5 > 0 be as in (2.10). Then p; =0and p=35(1—e7).
Now let s, = 3(1 +¢). Using (2.10) and substituting s, instead of s into (2.9) we
obtain

ps. = (1 £ €)e(3) +p

where
o e "
) =% |\ T3eer - !
=3l (Lke(e” — 1) + ple, 7)) ~ 1]
=—-ptep+pile,T,5),
lpa(e, 7, 8)| = |57 T p(e, )| < 26%(e” — 1)*5 < 7p.
Then

1
ps, =Ep+ (12 6)pi(e,7,3) > -2-€2p

since 0 < 7 < § < €. Set sp = min{3,1 —e}. Then

1 1
Ps > EEZP > 562,30



14 M. RATNER Isr. J. Math.

for all s € [0,(1~¢)soJU[(14€)s0, 1], since p, decreases in s on [0, 3} and increases

in s for s > s by (2.9). This completes the proof of the lemma. ]

Now let 0 < £(8) < 6 be such that
W(x4;€(6)) C 9s(W(x;6))
for all 0 < s < 1. Define
B(x,68) = Bo(x, ).

It follows from Lemma 2.1 that if (x,8) > 0 for some 0 < § < £5 then there
exists sg € [0,1] such that

1
B(xs,(8)) > 5 min{1,2(x,6))
for all s € [0,(1 — €)so} U [(1 + €)so,1]. Now define
B(x;6,t) = min{s > 0: yxu(s) € W(x;¥6,t) for somee £y eI}, t>1.
Then
A(x;4,t) = B(xa(r),8)t, B(x;4,1) = B(x,6)
where e?” = t. We get the following
COROLLARY 2.1: Let 0 < € < 0.0l¢gp be given and let §(x;6,t) > 0 for some

0 < & < &5. Then there exists so € [0,¢] such that

Blxs;6(6),8) 2 3 min{t, 2(x,5,1))

for all s € [0,(1 — €)s0] U[(1 + €)s0,t|, where x, = xu(s).

LEMMA 2.2: Suppose that 1 < 8 < 2t for somet > 1, 0 < § < 0.01ep, where
B = B(x;6,t). Then there exists yx € W(x;V'106,8) such that 7(oy (B)) is a
closed (periodic) U-orbit in I'\G of length (period) a(yx, ). (Here oy, (8) and

a(yx, () are as in Section 1.)

Proof: Let v = $Inf and z = xa(r). Then
yeu(1) = za(r)h(5) € W(z:5,/8)

for some e # v € T'. It follows from the definition of p and d that we can
assume z € E;, y € T, for some 7 = 1,...,n. Then (2.3) holds with p = 1 and
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2 <lql = lpe” +be™7| < 2, since |7|,|b] < 26. This implies that sin® § < 46 and

(2.13) either 6] < V66 or |1 — 6] < V6§

if § is sufficiently small. Then cos@siné > 21_q and hence

vizu(p') € W(z;6,t/5)

for some p' > 0 by (2.5). It follows then from {2.4) and the definition of 3 that
¥ =79, p' = 1. But z = 2'r(8) for some z' with y,;2'u(s) = z' for some s > 0. It
follows then from (2.13) that there is y, € W(z;v/108) such that n(ay (1)) is a
closed U-orbit in '\ G of length a(yz,1). This completes the proof of the lemma
if we set yx = yza(—r). |

Proof of Theorem 3: It suffices to prove that if t € T\G = X and zU is not a
closed orbit then
S¢(z,t) — f,, whent -

for every bounded uniformly continuous function f on X.

So let 0 < € < 0.01¢o and f as above be given. Let € = éCf'l and let wy(e) be
as in the proof of Theorem 2. Let 0 < § < [min{e,ws(£!°)}]1%° be so small that
7 is one-to-one on V(z;86,1) — 11(W(z, 6)) for every z € G for which #n(z)U is a
closed U-orbit in X of length 1. Let

n= V(W(Vﬂ(zv 5(5)/2’ 1))

where V,(z;6,1) is as in the proof of Theorem 2 and 0 < £(§) < § as in Corol-
lary 2.1.

Since the action of U on (X,v) is ergodic, there are Iy > 1 and Y C X with
v(Y) > 1 — 0.1y such that

S5y, 1) = ful <€

forally € Y, t > Iy. Arguing as in the proof of Theorem 2 we conclude that if
2U is a closed orbit of length | > 5]y then

(2.14) 151(2,1) — £, < 28°.
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Since zU is not a closed orbit it follows from (2.3) that there exists ¢y > 10lp/c*
such that
(2.15) B(x;6,t) > 10l /e*, x€x 'z}
for all ¢+ > t,. We claim that
(2.16) S5z, t) - ful < &

for all ¢ > t;.
Indeed, let t > tg. It follows from (2.15) and Corollary 2.1 that there exists
sp € [0,1] such that
ﬂ(xa;g(é)’t) > 101y
for all s € [0,(1 — €2)so] U [(1 + €%)s0,(1 — €2)t] = T. To prove (2.16) for ¢ it
suffices to show that for each s € T there is Iy < #(s) <t — s such that

(2.17) |Sp(za,t(s)) = ful < &%

Solet s € T. If 7 is one-to-one on V_,(x,,£(8)/2,t), xs € 7~ 1{z,} then arguing

as in the proof of Theorem 2 we obtain
[Se(zs,t —8) = ful < é.

We set t(s) = ¢t — s in this case. Now assume that 7 is not one-to-one on
Vi_s(xs,€(6)/2,t). Then there are r € [0,t — 5], y € ¢(W(x,,£(6)/2,t) such
that

Tyu(p) € ¥r(W(x,,£(8)/2,1)
for some p > 0 and some e # 4 € I'. This implies via (2.8} that
1x,u(r') € W(x,;4(6), 1)
for some 0 < r' < (t — s)(1 +£%). This gives
10 < B(x4i £(8), 1) < (¢ = )(1 +2°).

Set p(s) = B(x,,£(é),t). It follows then from Lemma 2.2 that there is y, €
W(zs,1/106(6), p(s)) such that oy, (p(s)) is a closed U-orbit of length a(y,, p(s)).
Set t(s) = p(s) if p(s) < t—sand t(s) =t—sif p(s) >t —s. Relation (2.17) now
follows from (2.14) and our choice of §. This completes the proof of the theorem.
|
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D) CoMMENTS. Our proofs of Theorems 1, 2, 3 and 5 used the fact that U is
a horospherical subgroup for a(7), 7 > 0, i.e. U = {g € G: a(—n7)ga(nr) — e,
n — oo}. This is not necessarily true if U is a one-parameter unipotent subgroup
of a general Lie group G. Because of this, our proofs can not be extended to
the general case. In Section 3 and Section 4 (which handles arbitrary discrete
T') we give proofs of Theorems 3 and 2, which can be extended to the general
case. This was done in [R, 1-4]. Note that an analog of Theorem 2 for general
horospherical U is given in [R1, Theorem 4] (see also [D1] and [V]).

3. A better proof of Theorem 3

In this section we give a better proof of Theorem 3, which incorporates in a simple
form some of the ideas used to prove Theorem C (see [R4, Proof of Theorem 2.1)).
The proof uses Theorem 2.

Let T’ be a lattice in G = SL(2, R). We will need the following theorem.

THEOREM 3.1: Given € > 0 there is a compact K(¢) C X = I'\G such that if
U = {u(s): s € R} is a one-parameter unipotent subgroup of G, z € X and zU

is not a periodic orbit then

(3.1) | o tzuends 2 (1 - ey

for all t >ty and some ty = tg(z,U,€) > 0, where x,, denotes the characteristic
function of K.

A general version of this theorem was proved in [D2, Theorem 3.5] and used
in [R4, Proof of Theorem 2.1].

Let U = {u(t) = exptu: t € R}, u € & be a one-parameter unipotent subgroup
of G and v € . Then | Ad,(,)(v)| ? is a polynomial in s of degree < 4, where
Adg(v) = f;(g'l(exp tv)g)|t=0, g € G. This fact plays an important role in the
proof of Theorem 3.1. Indeed, we prove the following

LEMMA 3.1: Let P(k) be the set of all real (or complex) polynomials of degree
< k. Then given € > 0 and § > 0 there is 0 < § = §(¢,0,k) < 6 such that if
P € P(k) and

(3.2) max{|P(s):0<s<t} =86
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for some t > 0 then
Ms €[0,2]: |P(s)]| > 6} > (1 —e)t

where A denotes the length measure on R with A([0,t]) = ¢.

Proof: Using a standard scaling argument it suffices to assume that ¢t = 1 in
(3.2). Let C([0,1]) denote the Banach space of all continuous functions on [0, 1]
with the supremum norm. For f € C([0,1]), a > 0 and € > 0 define

A(f,a) = {z €[0,1]: |f(z)| = a},
pe(f) = sup{a 2 0: M(A(f,@)) 2 1 -¢}.

It is easy to see that |p.(f) — ve(9)| < | f—g| for all f,g € C([0,1]) and hence
@e(f) is continuous on C([0,1]). Now let

Po = {P € P(k): I PI 10’1] = 9}.

Then Py is a closed and bounded subset of the finite dimensional subspace P(k) C
C([0,1]). Hence Py is compact and hence ¢.(P) > & for all P € Py and some
8o = bo(e,0,k) > 0. This completes the proof. |

Now let I' =T — {e} and for x € G let
A(x) = dg (x,Tx).

Also let E;,7;, i = 1,...,n and p > 0 be as on page 10. For 0 < r < p,

1=1,...,n define
Ei(r) = {x € E;: A(x) <r} C Ei(p) C E;.
Now suppose that U is a one-parameter subgroup of G and
dg (xu(s),vixu(s)) < 6
foral0<s<t¢ somet>0,xeE;i€{l,...,n} and 0 < 8 < 0.5p. Then
(3-3) xu(s) € Ei(6), dg(xu(s),7ixu(s)) = A(xu(s))

for all 0 < s < t by the definition of E; and E;(6).
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It follows from the definition of E; that if x € G and A(x) < p then there
is a unique : € {1,...,n} and 4, € T such that 4,x € E;. Then defining

Yx =T Yi¥x We get
AF %) = dg (7%, 7i7xX) = da (X, 7xX) = A(x).
This implies via (3.3) that if
dg (xu(s),yxxu(s)) < 6
forall0 < s <tandsomet>0,x€ G, 0<8<0.5pthen
(3.4 o (xu(s), vaxu(s)) = A(xu(s))
forall0 < s <t

Proof of Theorem 3.1: Let ¢ > 0 be given and let 0 < § < min{1,0.5p} be so
small that if d(x,y) < 26 for some x,y € G then y = xexp v for some » € &
with | v| = dg(x,y). Let 0 < 6% = §(0.1¢,6%/4,4) < 62/4 be as in Lemma 3.1
for k = 4. Let

K(e)={z € X: A(x) > §, x € 7' {z}}

—a compact subset of X. Now let U be a one-parameter unipotent subgroup of
G and 2 € X. Suppose that zU is not a periodic orbit. If zu(s) € K(e) for all
s > 0 then we are done. Otherwise there exists sp > 0 such that zu(se) ¢ K(¢).
Then there is 7 € {1,...,n} and y € E; such that n(y) = zu(se) and

d.(y,71iy) < 6.

Then v;y = y expv for some v € ® with | v| < § and expv ¢ U since zU is not
periodic. Hence there is 7 > 0 such that

dG(yu(7)37iyu(T)) =0

(35) dy (yu(s),yiyu(s)) < 8

for all 0 < s < r. Hence
(3.6) A(w) =6 where w = yu(r)
by (3.3) and (3.5). Now let t > 1. Define

F(w,t) = {s € [0,]: A(wu(s)) < é}
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and let s; = sup F(w,t), w; = wu(s;). Then
dg (Wi, Yw,W1) <6
where v, is as in (3.4). It follows from (3.6) that
dg (W, yw, W) > 0.56.
Hence there is 0 < r; < s7 such that

de(wiu(ry — s1), Yw, Wiu(ry — s1)) = 0.5,

dg (Wiu(=$), 7w, W1u(—s)) < 0.56,
for all s € [0,s; — ry]). It follows then from (3.4) and Lemma 3.1 that
As €[0,81 —m): wiu(—s) € K(e)} > (1 - 0.1e)(s1 — 1)
where K(¢) = 771 (K(e)). Hence
Ms € Ii: wu(s) € K(e)} > (1 — e)M(I1)

where I, = [r1,1]. By repeated application of this argument we obtain s; > s >
>8>0 >re > > =084 <Tp <S8k, k=1,...,m~—1such
that

sk =sup(F(w,t)N[0,rxk-1]), mo=t, k=1,....m

and
Ms € Ir: wu(s) € K(¢)} > (1 —0.1e)A (1),

Ik = [rkyrk-]]3 [Oat] = U Ik-
k=1
This implies (3.1) if we set to = 100(so + 7)/¢. This completes the proof of the
theorem. |

Now let z € X be fixed. Let Co(X) denote the Banach space of all real
continuous functions on X vanishing at infinity with the supremum norm and let
Cg(X) denote the dual of Co(X). For t > 0 define T ; € C3(X) by

Tf) = ¢ [ Heu(a)ds, £ e Colx)
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Then | Ty | < 1. Let 7; denote the set of all limit points in the weak *-topology
on C3(X) of the set {T; :t > 0} when t T 0o. For each T € T, there is a unique

Borel measure g, on X such that

T(f)=/xfduT, f € Co(X).

It is clear that p,.(X) < 1 and g, is U-invariant. Write M(z,U) = {p,: T € T, }.
For each p € M(z,U) there is a subsequence ¢, = t,,(¢) T 00, n — oo such that

T(tn, f) = Tepn(f) = /x fdu

for all f € Co(X).

The proof of the following lemma uses standard arguments and can be found
in [R4, Proposition 1.2]. In this lemma A5 denotes the é-neighborhood of A C X
in X.

LEMMA 3.2: Let up € M(z,U) and let 0 < t, = t,(u) T oo be as above. Let
K C X be a compact subset of X. Then, given € > 0 there is 6o = §p(e, K) > 0
such that

p(K) < liminf T(tn, x,, ) < limsupT(tn, Xx, ) < p(K) +¢

forall0 < 6 < é.

This lemma implies via Theorem 3.1 that u(X) =1 for all p € M(z,U).

Let o € M(z,U) and let Y,, C 2U be the support of p. Let {(C(y), nc(y)): ¥ €
Y} be the ergodic decomposition of the action of U on (Y}, 1), Y, C Y, u(Y}) =
1. Let C(y) denote the support of pc(y) and let £, = {C(y): y € Y;}. It follows
from Theorem 2 that if C(y) € £, then either C(y) = X and pc(y) is G-invariant
or C(y) = yU is a periodic orbit of U with pc(,) being the normalized length
measure on yU. Let {, = {C € £&: C is a periodic orbit of U}.

Proof of Theorem 3: 1t suffices to prove that if §, = u(U{C: C € (,}) > 0 for
some p € M (x, U) then zU is a periodic orbit.

Indeed, let 8 = B, > 0 for some u € M(z,U). Let K = K(0.018) be as in
Theorem 3.1 and let D be a compact subset of U{C: C € (,} with u(D) > 0.96.
It follows then from (1.1) that there exists 7 > 0 such that Da(r) C X — K.
Lemma 3.2 implies that

linm i;‘,f T2t.(x0,) 2 0.98



22 M. RATNER Isr. J. Math.

for all small § > 0. Hence
Iilninsz,tne-Tr (X(Dl(r))g) 2 0.9,6

for all small § > 0, where z = za(r). This implies that relation (3.1) does not
hold for z and £ = 0.013. Then 2U must be periodic by Theorem 3.1. Hence so

is zU, since a(7) normalizes U. This proves our theorem. 1

4. Arbitrary homogeneous spaces of SL(2, R)

A) CLASSIFICATION OF INVARIANT MEASURES FOR HOROCYCLE FLOWS. In
this section we shall prove Theorem 2. Thus we assume that I is an arbitrary dis-
crete subgroup of G. Since G is unimodular, I'\G carries a o-finite G-invariant
Borel measure v.

The central role in the proof of Theorem 2 is played by a dynamical property
of U, called the R-property which was first introduced in [R5]. To state it we
turn again to W(x;é) defined in Section 1 for a small 0 < § < 0.1. It follows
from (2.8) that if y = xa(7)h(b) € W(x;§) and bs < €27 for some s € R then

yu(ea(y,s)) = xu(s)a((y, s))h(¥y, s))
where 7(y, s), b(y,s) and a(y,s) are as in (2.8). Relations (2.8) imply the fol-
lowing statement.

THE R-PROPERTY FOR HOROCYCLE FLOWS. Thereexist 0 <n<land(C >1
such that if

max{|r(y,s)|: 0 < s <t} = |r(y,t)| = 6
for some t > 1, y € W(x,6), 106 < 8 < 0.5 then

0 o)
(1) S <9l <6, fily, o)l <

for all s € [(1 —n)t,t].
This property has been extended to simply connected unipotent subgroups of
general Lie groups G in [R1]. It plays a crucial role in the proof of Theorem B.
Now let p be an ergodic U-invariant Borel probability measure on X =T'\G
and let A = A(y) = {g € G : the action of g on X preserves u}. Then A(y) is a
closed subgroup of G and U C A(y). Let

Q = {a(r)u(s): r,s € R}.
Then Q normalizes U.
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LEMMA 4.1: Suppose that Q —A # (. Then there exists Y C X, u(Y') = 1 such
that Y NYq =0 forallq € Q — A.

Proof: First let us show that for every q € Q — A there is Xq C X, u(Xq) =1
and (q) > 0 such that

(4.2) XqNXeg=10

for all g € qQ(q)(€) = Q¢(q)(q), Where Q.(e) denotes the e-ball at e in Q.
For q € Q — A define

tq(E) = u(Eq)

for every Borel subset E C X. It is clear that uq is an ergodic U-invariant
measure on X, since q normalizes U. Also puq # p, since q ¢ A. Then pq is
singular with respect to x4 and hence there exists Eq C X such that

#(Eq) =1 and pq(Eq) = p(Eqq) = 0.
Let E, = Eq — Eqq. Then u(E;) =1 and
EqNEgq=4.

Now let K be a compact subset of E; with u(K) > 0.99. Then there is ¢ =
e(q) > 0 such that

(4.3) dx(K,Kq) > €.

Since U acts ergodically on (X, p) there is Xq C X, u(Xq) =1 such that

1

(44) Sun@t) = 7 [ xx(zu(s))ds = u(K), ¢ oo

for all z € Xq. We claim that (4.2) holds for all g € Q. (q)(q). Indeed, suppose
to the contrary that
XqNXqg # 0

for some g € Q,(q)(q). Then there is z € Xq such that z = yg for some y € X,.
We have g = a(7)u(r) for some 7,7 € R. Also yu(s)g = zu(se™?7) for all s € R.
It follows from (4.4) that there is t > 1 such that

SXK (yvt) 2 09,
SXK(z,e_:'rt) > 0.9.
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This implies that there is 0 < s < ¢ such that
yu(s) =z € K and 2g € K.
But zg = zqp for some p € Q,(q)(e). Hence

dx(2g,2q) < £(q)
in contradiction with (4.3). This proves (4.2).
We have -
Q- A C | Qe(qn(@i)

=1

forsomeq; €Q—A,i=1,2,... . Let

Then u(Y) =1 and
YNYg=10

for all g € Q — A by (4.2). This completes the proof of the lemma. |
A more general version of Lemma 4.1 is proved in [R1, Theorem 2.2].
THEOREM 4.1: Suppose A ¢ A(p). Then u is supported on a closed orbit of U.

Proof: Since A ¢ A and A is a closed subgroup of G there is 0 < § < 0.1 such
that

a(t) ¢ A

for all 0 < |7]| £ 8. We can assume that 8 < 8¢(0.1) where 8¢(¢) is as in (1.2).
Thus a(7) € Q—Aforall 0 < |r| < 0. Let Y C X, u(Y) =1 be as in

Lemma 4.1 and let 0 < 17 < 1 be as in the R-property. Then there are a compact

KCY,u(K)>1-10"3y and § = §(K) > 0 such that

(4.5) dx(K,Ka(r)) > §

for all §/2 < || < 0. Since the action of U on (X, u) is ergodic, there are F C X,
w(F) > 0 and ¢¢ > 1 such that

(4.6) Sy, (z,8) >1-107%
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forall z € F, t > ty.
Now let 0 < £ < 0.016 be so small that if max{|7(y,s)|: 0 < s <t} = |7(y,t)| =
0 for somey € W(x;£), x € G and t > 1 then

t > 10ty and C6/t < 0.014.
Here C > 1is as in (4.1). We claim that if z,y € F and dx(z,y) < £ then
y € Q(=;€) = {za(r)uls): |r|, s < £}.

Indeed, suppose to the contrary that y ¢ Q(z;£). We can assume without loss
of generality that y = za(7)h(b) € W(z;€). Then b # 0. It follows then from
(2.8) that there is t = t(y) > 0 such that |7(y,t)| = § = max{|r(y,s)]: 0 < s < t}.
Then ¢t > ¢y and a(y,t) > to by our choice of ¢ and 6. It follows then from (4.6)
that

Sx, (,t) 21-0.017
Sx,c (W, (y, 1)) 2 1 - 0.01n.
This implies by our choice of 8 that there is s € [(1 — n)t,1] such that
zu(s) € K and zu(s)a(r(y, s))h(b(y,s)) € K.

Then

N

<y, 8) <6, [b(y,s)| < CO/t <0.16
by the R-property. This gives
dx(K,Ka(r(y,s))) <0.16

in contradiction with (4.5).
Now let z € FNY be such that u(F N O,(z)) > 0 for all € > 0, where O.(z)
denotes the ¢-ball at z in X. We have just shown that

wQ(z;6)NY) > 0.
This implies via Lemma 4.1 that
Q(z;§)NY CzU

since ¢ € Y. Hence p(zU) = 1, since U acts ergodically on (X, u). This

completes the proof of the theorem. 1

Now we shall prove the following
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THEOREM 4.2: Suppose A C A(u). ThenT is a lattice and p is G-invariant.
To prove this theorem we need the following lemma.
LEMMA 4.2: Suppose A C A(p). Then the action of A on (X, i) is mixing.

Proof: It suffices to show that
/ o(z)f(za(—7))dp — 0, when 7 — 0o
X

for any two bounded uniformly continuous functions ¢ and f on X with f, =

fX fdu = 0.
So let € > 0 be given and let 0 < § < 1 be such that

(4.7) lo(z) — (2)l <€

for all z,z € X, dx(z,z) < §. Since the action of U on (X, ) is ergodic there
aretg >land Y C X, u(Y) > 1 — ¢ such that

(4.8) ISt(u,t)l <&

forallyeY,t > t.
Now let g > 0 be such that e=2™¢y = § and let 7 > 7,. Write

Y. =Ya(r), w¥)=pY)>1-¢
since a(r) € A(s). We have using (4.7)
1) = [ ofa)f(aa(=r)in
-1/ 6 (| eleutensentyat-ran ) as

8
-/ (}5 / sO(rw(S))f(xU(S)a(—T))ds) du
§
=/X<p(z) [%/0 f(s:a(—r)u(ez”s))ds] du+ €

= [ o[ [ sleat-ryutonas] du+ e,

- / o(u)S5(ya(=), 57 ) + €1 + €2

T
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where s, = 6e27 > tg, ya(—7) € Y whenever y € Y; and Je1|, [e2| < Cie for some
C; > 0. This gives via (4.8)
H(r)| < Ce

for all 7 > 79 and some C > 0. This completes the proof of the lemma. |

A more general version of this lemma is proved in [R1, Theorem 5].

Thus we assume that A C A(g). Then u is preserved by the action of Q =
{a(r)u(s): r,s € R} on X.

Now let z € X and H(z;8) = {zh(s): |s| < é}. If 0 < § < 0.1 is sufficiently
small then for each y € Q(z;¢) and each z € H(z;6) the intersection H(y;108) N
Q(z;106) consists of exactly one point p = p(y, z). Define

H(y) = H(p) = {p(y,v): v € H(z;6)},
Q(z) = Q(p) = {p(w, 2): w € Q(z;6)},
Bs(z)= |J H®).

y€Q(z;6)

We have
Bs(z)= |J Q)= | H®)
g€H(p) r€Q(p)
for all p € Bs(z). The set Bs(z) is similar to the set U{1,(W(z;$)): |s| < 6} dis-
cussed in Section 1. We can assume without loss of generality that u(Bs/s(z)) > 0
and 7 is one-to-one on the 106-ball Oy95(x) at x € #~!{z} in G.
Define
Q = U{Bs(z)a*: k € Z}.

Then u(2) = 1, since the action of a on (X, i) is ergodic. Also the action of a
on (Q,v) is measure preserving. Let 7 be the Borel measure on X defined by
v(D) = v(D N Q) for every Borel subset D C X.

LEMMA 4.3: 1) »(Q) < 00; 2) p=i/v().

Proof: Let f be a continuous function on X with compact support. Since the
action of a on (X, ) is ergodic, there is a subset Cy C Bs(z), u(Cy) = u(Bs(z))
such that if y € Cy then

n—1
(4.9) smm=zﬂwﬂm~n=Awmn~w.

i=0
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Let € C Bs(z), u(Cy) = u(Bs(z)) be such that if z € C¢ then
ACr N Q()/NQ(2)) = 1
where A denotes a Q-invariant measure on 2Q. Pick # € Cy and define

By =U{H(y): y € C; N Q(2)} C Bs(z),
Qf =U{Bsa*: ke Z}c 9.

We have v(By) = v(Bjs(z)) and v(Qy) = v(Q). Now let z € By. Then z € H(y)
for some y € Cy. We have

n

dx(za™",ya™") > 0, n — oo.
This and (4.9) imply that

Sgn(z) = fu, n— o0
for all z € By, since f is uniformly continuous. Also

(4.10) Sga(w) = fu, n—o oo

for all w € Q5. Now let f be nonnegative with f, # 0. It follows then from the

Fatou’s lemma that
fur(S2) =/ fudv < lim / Stndv = / fdv < oo.
Q, n—oo Ja, Q

This proves that v(2) < co. Now we use (4.10) and the Lebesgue Dominated

Convergence Theorem to get

o= [ 10= [ Spnto— [ fudv = fuon@)

for every continuous function f on X with compact support. This proves that

p=v/v(Q). 1

Proof of Theorem 4.2: In view of Lemma 4.3 it remains to prove that v = 7.

To do so it suffices to show that for every p € X

¥(Oo.1s(p) —2) =0
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where O,(p) = pO,(e). Define
Q2 = {w € Q: wa™™ € Byy(x) for intinitely many n € Z*}.
We have 4(Q) = 1 and »(Q) = ¥(), since u = ¥ = 7/v(Q) and the action of a
on (2, u) is ergodic. If w € § then H(w;106)a™™ C H(y) for some n € Z* and
some y € Bs(x). This implies that
H(w,108) C
for all w € Q, since Q is a-invariant. In fact, wH C Q for all w € Q. Now let
0 = {w € Q: M2 N Q(w; 106))/M(Q(w, 108)) = 1}.
We have

(4.11) v(Q) = ()

since # =  is Q-invariant. It follows now from the definition of { that if w €
then

(4.12) v(Bs(w) N Q) = v(Bs(w)).
This implies via (4.11) that
¥(Bs(w) N Q) = v(Bs(w))

for all w € . Now let p € X. Then we can find z = wy,...w, such that
wi € Bs(wi-1) N ,i=2,...,nand 00.15(p) C Bs(wn). This implies via (4.12)
that

¥(Oo.as(p) =) =0
and proves that v = . 1

A similar proof for a more general case is given in [R2, Section 7).

Proof of Theorem 2: The theorem follows from Theorems 4.1 and 4.2. 1
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B) ORBIT CLOSURES FOR HOROCYCLE FLOWS. In this section we prove Theo-

rem 4. Thus we assume that I is a discrete subgroup of G and T is not a lattice.
Suppose that z € T'\G = X and zU is compact in X. Let M(z,U) be as in
section 3. Then u(X) =1 for all 4 € M(z,U).

Proof of Theorem 4: Let u € M(z,U) and let Y, C zU denote the support of
p. By Theorem 2 there is y € Y, such that yU is a periodic orbit. Since zU is
compact, there are r > 1 and ¢ > 0 such that

(4.13) dx(yUa(r),zU) > e.

Now suppose to the contrary that zU is not periodic. Since yU C zU there are
t > 0 and z € yU such that

p = zu(t) = za(r)h(b) € W(z;é)

for some |r|,|b] < § and b # 0, where 6 > 0 is chosen so small that § < 0.0lee™".
It follows then from (2.8) that if e” — sbe™ =€ then

T(y,8)=r, [b(y,s)| <0.1e.

Then
dx(pu{a(y, 5)), zu(s)a(r)) < 0.1¢

in contradiction with (4.13), since zu(s) € yU. This completes the proof of the

theorem. |
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