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A B S T R A C T  

In this paper I give simple proofs of Raghunathan's conjectures for SL(2, R). 
These proofs incorporate in a simplified form some of the ideas and meth- 
ods I used to prove the Raghunathan's conjectures for general connected 
Lie groups. 

I n t r o d u c t i o n  

The purpose of this paper  is to present simple proofs of Raghunathan 's  conjec- 

tures for SL(2, R). 

More specifically, let G be a Lie group with the Lie algebra 6 ,  r a discrete 

subgroup of G and 7r : G ~ r\G the covering projection ~r(g) --- rg, g e G. 

The group G acts by right translations on F \ G ,  x ~ xg, x C F \ G ,  g E G. A 

subset A C F \ G  is cMled h o m o g e n e o u s  if there is x E G and a closed subgroup 

H C G such that  x H x  -1 N r is a lattice in x H x  -1 and A = ~r(x)H. A Borel 

probabili ty measure # on F \ G  is called a l g e b r a i c  if there exists z E F \ G  and a 

closed subgroup H C G such that  x H  is homogeneous and tt is the H-invariant  

Borel probabili ty measure supported on z H .  

A subgroup U C G is called u n l p o t e n t  if for each u E U the map  Adu : ~ 

is a unipotent linear transformation of 6 .  

Here are the two Raghunathan 's  conjectures. 
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CONJECTURE 1 (Raghunathan's Topological Conjecture): Let G be a connected 

Lie group and U a unipotent subgroup of G. Then given any lattice F in G and 

any x 6 F \G ,  the closure xU of the orbit xU in F \ G  is homogeneous. 

CONJECTURE 9. (Raghunathan's Measure Conjecture): Let G be a connected 

Lie group and U a unipotent subgroup of G. Then given any lattice F of G, 

every ergodic U-invariant Bore1 probability measure on F \ G  is algebraic. 

In fact, Raghunathan proposed a weaker version of Conjecture 1. This version 

and Conjecture 2 were stated by Dani [D1] for reductive G and by Margulis [M1, 

Conjectures 2 and 3] for general G. 

Conjectures 1 and 2 for nilpotent G were proved earlier by Parry [P] and 

Furstenberg [F1] and for G = SL(2, R) by Hedlund [HI, Furstenberg [F2] and 

Dani [D1]. 

Recently Conjecture 1 and a stronger verison of Conjecture 2 were proved in 

[R1-4]. More specifically, we proved the following theorems. 

TIIEOREM A (Orbit closures for unipotent actions): Let G be a connected Lie 

group and U a unipotent subgroup o/'G. Then given any lattice P of G and any 

x 6 F \ G  the closure xU of the orbit xU in F \ G  is homogeneous. 

THEOREM B (Classification of invariant measures for unipotent actions): Let G 

be a connected Lie group and U a unipotent subgroup of G. Then given any 

discrete subgroup r (not necessarily a lattlce) of (], every ergodic U-invarlant 

Borel probability measure on r \  G is algebraic. 

Now let U = {u(t) = exptu: t E R),  u E ~ be a one-parameter subgroup of G. 

A point x E r \ G  is called generic for U if there exists a closed subgroup H C G 

such that U C H, xU = xH is homogeneous and ~ f t  f (xu(s) )ds  ~ fr\G f d v .  

for every bounded continuous function f on I ' \G,  where v H denotes the H- 

invariant Borel probability measure on I ' \G,  supported on xH. Similarly, one 

defines generic points for one-generator subgroups U = {uk: k E Z} of G, u E G. 

In [R4] we proved the following theorem. 

TIIEOREM C (Uniform distribution of unipotent orbits): Let G be a connected 

Lie group, F a lattice in G and U a one-pm'ameter or one-generator unipotent 

subgroup of G. Then evely point x E F \ G  is generic for U. 

Theorem C was conjectured by Margulis in [M2, Conjectures 3 and 4]. For 

G = SL(2, R) Theorem C was proved by Dani and Smillie in [DS]. Also recently 
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N. Shah [Sh] proved Theorem C for semisimple G of real rank one by other 

methods. 

We conjecture the following version of Theorem C for arbitrary r (not neces- 

sarily lattices). 

CONJECTURE D: Let G be a connected Lie group, r a discrete subgroup of G 

and U a unipotent subgroup of G. Suppose that x 6 F \ G  and x U  is compact in 

F \ G .  Then 1) xU is homogeneous; 2) i f U  is a one-parameter or one-generator 

subgroup of  G then x is generic for U. 

The purpose of this paper is to take the simplest case of G = SL(2, R) and 

to demonstrate in a simplified form some of the ideas and techniques we use to 

prove Theorems A, B and C. For G = SL(2, R) we consider 

{ [1,] } ] } 
U =  u( t )=  0 1 : t E R  and A =  e_ t : t E R  . 

The action of U on I ' \G  is called the horocycle flow and the action of A on I ' \G  

the geodesic flow. Theorems A, B, C and Conjecture D for G = SL(2, R) take 

the following form. 

THEOREM 1 (Orbit closures for horocycle flows): Let F be a lattice in G = 

SL(2, R) and x 6 r\G. Then either xU = F \ G  or the orbit x U  = x U  is 

periodic. 

THEOREM 2 (Classification of invariant measures for horocycle flows): Let P 

be a discrete subgroup of G = SL(2, R) and I~ an ergodic U-invariant Borel 

probability measure on F \ G .  Then either 1) F is a lattice and tt is G-invariant 

or 2) # is supported on a periodic orbit of U. 

THEOREM 3 (Uniform distribution of horocycle orbits): Let F be a lattice in 

G = SL(2, R). Then every point x 6 F \ G  is generic for U. Equivalently, i f  

x E V \ G  and z U  is not a periodic orbit, then ~ f~ y(xu(s))a, --, fr\G fdv~  for 

every bounded continuous function f on F\G,  where v o denotes the G-invariant 

Borel probability measure on P\G. 

THEOREM 4: Let F be a discrete subgroup of G = SL(2, R), which is not a 

lattice. Suppose that x 6 F \ G  and xU is compact in F\G.  Then xU = xU is a 

periodic orbit. 

Also we include the following theorem, proved earlier in [Sa] by other methods. 
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THEOREM 5 (Equidistribution of closed horocycles): Let F be a nonuniform lat- 

tice in G = SL(2, R) and let P = {x E r \a :  z u  is a periodic orbit}. Then 

T(~)--*~ lim 1 f0 T(~) ~ t x j  f r  f ( xu(s ) )ds  -- f d v  G 
\G 

for every bounded continuous function y on r\G, where x E P and T(x)  > 0 

denote the period of the periodic orbit xU. 

The paper is organized as follows. In section 2 we give short and rather ele- 

mentary proofs of Theorem 2 for lattices, Theorem 1, Theorem 5 and Theorem 3. 

These proofs use in an essential way a special feature of U called "horosphericity" 

of U with respect to A. This feature is not necessarily possessed by unipotent 

U in general G. Because of this, the proofs in section 2 can not be extended to 

general G. This obstacle is removed in sections 3 and 4, where we give different 

yet still simple proofs of Theorems 3 and 2. Moreover, section 4 handles the case 

of a r b i t r a r y  discrete F (not necessarily lattices). The proofs in sections 3 and 

4 incorporate in a simple form some of the ideas and techniques used to prove 

Theorems A, B and C in [R1-4]. Also we prove Theorem 4 in section 4. The 

argument in the proof of this theorem can be used to prove Conjecture D for 

semisimple G of real rank one. Sections 3 and 4 can be read independently of 

section 2 and section 4 independently of section 3. We note that all our proofs 

are totally different from the proofs obtained by other authors. 

Finally, we point out a profound contrast in the dynamical behavior of the 

horocycle and the geodesic flows on r\SL(2, R). It was shown by Sinai [S] and 

Bowen, Ruelle [BR] that there are infinitely many ergodic A-invariant Borel 

probability measures all supported on F \ G ,  which are not algebraic. Also there 

exist points x E F \ G  for which the closures ~ of geodesic orbits are not smooth 

manifolds. These facts put geodesic actions in a striking contrast with the rigid 

behavior of horocycle actions, given in Theorems 1, 2 and 3. 

1. Prel lminarles  

Henceforth unless otherwise stated we shall denote by G the group SL(2, R) of all 

2 × 2 real matrices with determinant 1, equipped with a left invariant Riemannian 
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metric. There are the following basic one-parameter subgroups of G: 

{ [i'] } 
U =  u ( t ) =  0 1 : t E R  , 

{ [1 
H =  h(O--  t 

_ , ]  : t e n } ,  

o] } 
1 : t E R  . 

These subgroups of G satisfy the following commutation relations 

u(s)a(t) = a( t )u ( se -2 t ) ,  
(i.i) 

h(s)a(t) -- a(t)h(se2t) ,  s , t  E R.  

Let W denote the subgroup of G generated by A and H. For x E G, ~ > 0 define 

W(x;~)  = {xa(r)h(b): I~-I < ~,lbl < 6}. It is a fact that if ~ > 0 is sufficiently 

small then for each y E W(x;  6) and each 0 < s < 1 there is a unique a(y ,  s) > 0, 

a(y ,  0) = 0 increasing in s and continuous in (y, s) such that 

~b~(y) = yu (a (y ,  s)) E W(xu(s) ;  10~). 

The map ¢2, 0 < s < 1 is a homeomorphism from W(x;  6) onto a neighborhood 

of , ,u(s) in W(xu(~),  i06). Define 

V(x; ~, i) = L J { ¢ , ( w ( x ;  ~)): 0 < ~ < i}. 

Then 

where 

v(,,; ~, 1) = U{..(1): y e W(x; a)) 

ay(1) -= {yu(s): 0 < s < a(y ,  1)} C yU.  

For y, z E W(x;  6) define 

~0y,,(¢,(y)) = ¢~(z) E ¢~(W(x; 6)). 

The map ~0y,z is a diffeonmrphism from ay(1) onto az(1). Also ~Oy,z(p) is C °O 

in (y , z ,p ) ,  y , z  E W(x;6) ,  p E ay(1). This implies that given e > 0 there is 

60 = ~0(e) > 0 such that if 0 < ~ < 60 then 

I ~(B) 1 (1.2) I A(~y,.(B)) < o.o1¢ 
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for all Borel subsets B C ay(1) and all y,  z E W(x;  6). Here A denotes the length 

measure on y U  in which A{yu(s): 0 < s < t} = t for all t > O. 

For a large t > 0 let v = r(t)  = (In t ) /2 and let 

W ( x ;  6, t) = W ( x a ( r ) ,  6 ) a ( - r )  = {za(r)h(b) : Irl < 6, Ibl < 6t-x}, 

v ( x ;  6, t) = v ( x a ( ~ ) ,  6 ,1 )a ( - r ) .  

Also for y E W(x;  6, t) and 0 < s < t let 

a (y ,  8) = a (ya( r ) ,  s/ t ) t ,  

f , ( y )  = yu(a (y , s ) ) ,  

ay(t) = {¢,(y)  : 0 < s < t} = {yu(s) :  0 _< s _< a(y, t )} .  

It follows from (1.1) that 

C,(y) e W(xu(s) ;  106, t) 

for all 0 < s < t and all y E W(x;  6, t). Also 

A(ay(t)) = o~(y,t), A(ax(t)) = t 

and 

V(x; 6, t) = U { a y ( t ) :  y E W(x;  6, g)}. 

For y ,~  e w ( x ;  6,t) define ~,,,, : ~ , ( t )  --, , , ,(t) by ~y, , (C,(y))  = e,( , . ) ,  0 < 8 < 
t. It follows from (1.2) that if 0 < 6 < 60(e) then 

~(B) ] 
(1.3) A(~y--~--~(B)) 1 < 0.01~ 

for all Borel subsets B C ay(t), all y ,  z E W ( x ;  6, t) and all t > 0. 

Now let f be a bounded uniformly continuous funct ion on G.  Given ¢ > 0 let 

6 S = 6I(e ) > 0 be such that if y , z  E G and da ( y , z  ) < 61 then 

If(Y) - f(z)l  < 0.01e. 

(Here de denotes the left invariant metric on  G. )  Define 

w,,(~) = 0.1 min{6Ae ), 6o(~C7')}, 

SI (y ,  t) = -[ f (yu(s ) )ds ,  t > O, y E 13, 
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where C !  = m a x { l ,  I f l  oo}. I t  follows f rom (1.3) tha t  if 0 < 5 < wl(e ) then  

(1.4) t S S ( y , ~ ( y , t ) )  - S I ( z , a ( z , t ) )  I < 0.1e 

for all y ,  z E W ( x ;  5, t) and  all t > 0. 

Now let 1 ~ be  a discrete subgroup  of G and ~r: G ~ r \a  = x the covering 

project ion zr(g) = r g ,  g E G.  The  group G acts by  right t rans la t ions  on X ,  

x ~ xg,  x E X ,  g E G.  

For x E X ,  x E l r  -1 {x} let 

w ( . ;  5, t) = . ( W ( x ;  5, t)), t > o 

v ( . ;  5, t) = . ( v ( x ;  5, t)). 

Now suppose  tha t  r is one-to-one on W ( x ;  5, t). For y E W(x; 5, t) define 

~(y , , )  = ~ (y , , ) ,  0 < ,  < t 

where y = ~r -1 {y} n W ( x ;  5, t). These  nota t ions  will be  used in Section 2. 

For r > 0, g E G define 

where 

E(g ;  r )  = { g a ( r ) U K :  r < r < oo} 

Let F be  a nonuniform latt ice in G.  Then  there are r0 > 1, g l , . . .  ,gn  E G 

and 71, .  ..  , ' ) ' ,  E P with g i q T i g i  E U -  = {u(s): s < 0} i = 1 , . . . , n  such tha t  if 

we define E / =  E (g l , r0 ) ,  Fi = {'yik: k E g} ,  F = r - {e) then  X - U{Tr(Ei): i = 

1 , . . .  ,n}  is compac t  in X = F \ G  and 

(1.5) 

7iEi=Ei, i = 1 , . . . , n ,  

7Ei O Ei = O, Z ~ r - r i ,  i = 1 , . . . , n ,  

7EiMEj=O, iCj ,  7er ,  

dG(x, F x  ) = dG(x, ' ) ' ix) ,  i = 1 , . . . , n ,  x E Ei .  

[ ~ o s e  s ine]  } 
K = ~(e) = l - s i n O  coseJ:  0 < o < =~ . 
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PROPOSITION 1.1: Let K = X - U{~r(E{): i = 1 , . . .  , n } - - a  compact subset  o f  

X = r \ G .  I f  x E X and x U  is not  a periodic orbit, then there exists a sequence 

rn --* oo such that  xa(rn)  E K / ' o r  a/1 n. 

Proof'. Suppose to the contrary that there exists v0 > 0 such that xa(v)  6 K for 

all v _> r0. Then there exists i E {1 , . . . ,  n} such that x a ( r )  E U{TEi: 7 E F} for 

all r > TO, X E ~r-l{x}, since 7r(E/) N 7r(Ek) = ¢, j # k. Because U{TEi: 7 • r }  

is a disjoint union, there is x0 E r - l { x }  such that x0a(r )  E Ei for all r > to. 

But this happens if and only if x0 • giAU. Hence xU is a periodic orbit. This 

gives a contradiction. I 

2. F in i t e  v o l u m e  h o m o g e n e o u s  spaces  o f  SL(2, R) 

A) CLASSIFICATION OF INVARIANT MEASURES AND ORBIT CLOSURES FOR IIORO- 

CYCLE FLOWS. 

Proof  o f  Theorem 2 for Lattices: Let r be a lattice in G and u the G-invariant 

Borel probability measure on F \ G  = X. It suffices to show that if x E X and 

xU is not a closed (periodic) orbit then there is a sequence tn T c~, n -* o~ such 

that 

(2.1) S / (x ' t n )  --* f" = / x  f dv ,  n ~ oo 

for every bounded uniformly continuous function on X. 

So suppose that xU is not a closed orbit. By Proposition 1.1 there exist a 

compact subset K C X and a sequence Tn T oc such that xa(T,~) E K for all 

n = 1,2, . . . .  We claim that t ,  = e 2T", n = 1 ,2 , . . .  satisfies (2.1). Indeed, let f 

be as above and for a given ¢ > 0 let wl(e )  = w](¢), where ] is the lift of f to 

G. Since K is compact, there are 0 < * < 0.01w/(¢) and ~ > 0 such that 7r is 

one-to-one on W(x ;  ~) and 

, ,c; , (x; , ,  1))) > 

for all x E 7r- l(K),  where 

= o < s < ,}, o < r < 
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Since the action of U on (X, v) is ergodic there are to > 0 and a subset Y C X 

with v ( Y )  > 1 - 0.1~ such that 

I S s ( y , t )  - .f,,I < O.Ole 

for all y E Y, t ~ to. Now let no _ 1 be so big that t .  _> 100t0 for all n > no and 

let xn = xa(vn) E K,  n > no. Then 

This implies that 

v(~; ~, t~) = v(~n; ~, 1)a(-rn) ,  

,(~(Vo,,c;,,.(x;~,t,)) > , ,  x e ~ - ' { z ) .  

. ( V o . , , c ; , , .  (x; ~ , ~ )  ) n z # 

and hence there is Yn E W(x;  5, tn), n ~_ no such that 

This gives via (1.4) that 

ISi(x,tn) - f~l < 

for all n > no. This completes the proof of the Theorem. I 

Proo f  o f  Theorem 1: It follows from the proof of Theorem 2 just given that  if 

xU is not a closed orbit, then xU M G ¢ 0 for every open subset G C X. This 

implies that xU = X. I 

Note  2.1: The proof of Theorem 2 shows that if X = F \ G  is compact then 

S l ( x  , t) --~ f~, t --~ c¢ for all x E X. Hence the action of U on X is uniquely 

ergodic. Other proofs of this fact are given in [F2], [B] and [EP]. Our proof 

of the unique ergodicity of U for compact F \ G  applies also to the uniformly 

parametrized horocycle flow associated with the geodesic flow on the unit tangent 

bundle of a compact surface of variable negative curvature. | 

B) EQUIDISTR1BUTION OF CLOSED HOROCYCLES. 

Proo f  o f  Theorem 5: It suffices to show that 

S l ( x , T )  -+ f~ , T - +  oo 

for every bounded uniformly continuous function f on X = P \ G ,  where T = 

T ( x )  > O, x E P denotes the period of the periodic orbit xU. 
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So let f and ¢ > 0 be given and let wf(e) be as in the proof of Theorem 2. Let 

0 < g < wS(¢ ) be so small that lr is one-to-one on V(z;$, 1 ) -  ¢ l ( W ( z ;  6)) for 

every z • G for which ~r(z)U is a periodic orbit of period 1. Let 

, /= v(=(v0.01,c i ,  (z; ,, 1))) 

where Vr(z;  g, 1) is as in the proof of Theorem 2. Since the action of U on (X, v) 

is ergodic, there are to > 1 and Y C X with v(Y) > 1 - 0.1,/such that 

ISs(v,t) - < 0.01~ 

for all y • Y, t >_ to. Arguing as in the proof of Theorem 2 we conclude that 

[Sf(x,T) - f,,] < 

for all z 6 P with T(z) > 5t0. This completes the proof of the theorem. I 

C) UNIFORM DISTRIBUTION OF tIOROCYCLE ORBITS. The reader is advised 

to skip this section unless he or she is particularly interested in seeing a proof 

of Theorem 3 which does not use Theorem 2. (Also Lemma 2.2 below is of 

independent interest.) A much better  proof of Theorem 3 is given in Section 3 

below. 

Let P be a nonuniform lattice in G and let r0 > 1, gi, Pl, El, i = 1 , . . .  ,n  be 

as in (1.5). If r0 > 0 is sufficiently large then there is p > 0 such that 

{x 6 G: d~(x,  t x )  _< 3p} C {7Ei :7  • F, i = 1 , . . . , n }  

and if 

-rxu(p) e W(x;  0.1p) 

for some x E E i ,  i = 1 , . . . , n ,  0 < p < p and some e # 3' q F then 7 E Pi. Now 

we choose 0 < d < 0.1p such that 

xu(s)  6 E~ 

for all Is[ _< 3d and all x 6 Ei with d~(x, Fx)  < 3d, i = 1 , . . .  ,n. 

Henceforth we assume for convenience that d = 1. Now let x = gia( t )u(s)r(8)  

6 Ei for some i and suppose that 

(2.2) 7xu(p)  = xa(T)h(b) • W(x;  ~) 
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for s o m e e # T E F i ,  p E R a n d 0 < 5 < ~ 0 = 0 . 0 1 .  Then  

u(q)r(O)u(p) = r (0 ) a ( r )h (b )  

where  u(q) = a ( - t ) g 7 1 7 g i a ( t )  E U,  q # 0. Using this re lat ion one can compu te  

tha t  

e ~ = 1 - q cos 0 sin 0, 

(2.3) p = -qe -~ cos 2 0, 

b = - q e  r sin s 0. 

This  shows tha t  if p # 0 then  p > 0 if and only if q < 0. Also b >_ 0, whenever  

p > 0 and  

(2.4) p(q, O) is decreasing in q for all q and all 0 < O < 2% 

(2.5) It(q,  0)1 and b = b(q, ~) axe decreasing for all 

- o o  < q < 0 and all 0 with cos 0 sin 8 > 1/2q. 

Relat ion (2.4) implies tha t  if 

(2.6)   xu(p) e w(x; 5) 

for some 0 < p < 2 then  

(2.7) p = min{s  > 0: 7 x u ( s )  E W ( x ;  5) for some e # 7 E 1"}. 

Also it follows f rom (2.4) and (2.5) tha t  if (2.2) holds for some 0 < p < 2 and  

cos 8 sin 8 > 1/2q (in par t icular ,  when r > 0) then  (2.6) holds and  hence so does 

(2.7). 

Now let y = x a ( r ) h ( b )  E W ( x ; 5 )  and let a ( y , s )  > 0, 0 < s < 1 be  as in 

Section 1. T h e n  

y u ( a ( y ,  s)) = xu(s)a('r(s))h(b(s)) 

where 

(2.s) 

s 

a ( y , s )  - e2 r _ sb' 
r ( s )  = r ( y ,  s) = ln(e" - sbe-'),  
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Now let 0 < a < 0.01e0 be fixed and suppose that  (2.2) holds for some x E G,  

0 < p _< 1, e ¢ 3' E P and some Irl, [b I < & Then  b > 0 by (2.3). Also 

~x,u(pD e ¢,(W(x; a)) 

for all 0 < s < 1 and some pe _> 0, p0 = p, where xe = xu(s ) .  It follows then 

from (2.8) tha t  

s 
(2.9) O<_ps e 2 r - b s  s + p ,  ps_<2  f o r 0 < s < l .  

Relat ion (2.3) shows that  pa = 0 if and only if 

( 2 . 1 o )  a = ( ~  - ~' ) /~ ,  ~ ¢ 0, ~ > 0, p = ~(1 - ~-~). 

For 0 < s < 1 define 

fie = f l , (x,  6) = min{t  _> 0: 7 x ,  u( t )  E C , ( W ( x ;  a)) for some e # 3' E P}. 

LEMMA 2.1: Let 0 < ~ < 0.1~o be given. Suppose that flo = flo(X,a) > 0 for 

some 0 < ~ < e 5. Then there exists 0 <_ So <_ 1 such that 

1 2 
(2.11) /~e >- ~ min{1,/~oe } 

for ass s ~t [(1 - ~)s0, (1 + ~)s0], 0 < s < 1, 

Proof: We have 

"rexeu(~,)  e ,b , (W(x;  a)) 

for all 0 < s < 1 and some e # "re E r'. Let 

S = {s  E [0,1]:/~e < 1 } .  

It follows from the definition of p and d that  if s E S then we can assume 

xe E E i ,  "/e E Pi for some i E { 1 , . . . , n } .  Then  x ,  E E i ,  0 _< 5e -< 1 , ' re  E Pi for 

all 0 < s < 1. Also we can assume tha t  

(2.12) g~-lq',gi E U -  

since this is so when /3 ,  > 0 (by (2.3)) and if/7,  = 0 and (2.12) does not hold, 

then we can replace 7e by -x qce • Then  

3",x,(r,) = xa(T,)h(~,) E W(x; a) 
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for some 0 < /30 <_ rs _< 1 and all s E [0, 1]. Assume first t ha t  

~-~<0 for a l l s E [ 0 , 1 ] .  

Then  

13 

Then  

where 

G--r ] 
c(~)=~ 1 ,~ (~- -1 )  1 

= g [ e - ' ( 1  + e(e" - 1) + p(e,  r ) )  - 1 l 

= - p  + ep + p~ (~, r,  ~), 

Im(e,v,.~)l = I ~ e - ' p ( e , r ) l  _< 2ee(e ~" - 1) 2,~ -< rp .  

1 2 
po. = d p  + (1 + e)p~(e,~,~) > 5~ p 

since 0 < r < 6 < e 5. Set so = min{g, 1 -  e}. Then  

12 12 

~. >_r, >_Z0 

for all s E [0, 1] by  (2.9), since bs _> 0. Then  so can be chosen a rb i t r a ry  in (2.11). 

Now assume tha t  

r~_>0 for s o m e g E [ 0 , 1 ] .  

It  follows then  f rom (2.5) tha t  

~xsu(p~) E ¢,(W(x,~)) 

for a l l s  E [0,1] and some 0 _< ps < 1, p o = p > _ f l o  > 0 .  Then  

%=7i,  fl,=P~ 

for all s E [0,1] by  (2.7). Wri te  r~ = r > 0, bs = b _ 0. If  b = 0 then  v = 0 and  

fls = ~/0 for all s by (2.3) and  (2.9). Then  so can be chosen a rb i t r a ry  in (2.11). So 

assume tha t  b > 0 and  let ,g > 0 be as in (2.10). Then  p~ = 0 and  p = ,~(1 - e - r ) .  

Now let s~ = $(1 :ke).  Using (2.10) and subs t i tu t ing  s~ ins tead of s into (2.9) we 

ob ta in  

p~. = (1 + e)c(g)  + p 
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for all s E [0, (1 -e )so]U[(1  +e)so ,  1], since p~ decreases in s on [0, ~] and increases 

in s for s > s by (2.9). This completes the proof  of the lemma. | 

Now let 0 < ~(6) < 5 be such that  

W(xs ;  ~(~)) c ¢ , ( W ( x ;  5)) 

for all 0 < s < 1. Define 

3(x ,  5) = 30(x, 5). 

It follows fi'om Lemma 2.1 that  if 3 (x ,5 )  > 0 for some 0 < 5 < E 5 then there 

exists so E [0, 1] such that  

1 min{1, e23(x,  5)} 3(xs ,~(5) )  > 

for all s E [0, (1 - e)s0] tA [(1 + e)so, 11. Now define 

/3(x;5, t) -- min{s > 0: "yxu(s) E W ( x ; 5 ,  t) for some e ~ ' / E  P}, t _> 1. 

Then  

tS(x; 5, t) = 3(xa(r) ,  ~)t, 3(x; 5,1) = 3(x ,  ~) 

where e ~r = t. We get the following 

COaOLLAa¥ 2.1: Let 0 < e < 0.01e0 be given and let 3(x;5 ,  t) > 0 for some 

0 < 5 < e 5. Then there exists so E [0, t] such that 

1 2 
f l (xs ;~(6) , t )  >_ ~ min{ t ,e  3 (x ,6 , t ) }  

for ~1 ~ ~ [0,(1 - ~)~0] u [(1 + c)~0,t], where x ,  = xu(~).  

LEMMA 2.2: Suppose that 1 < 3 < 2 t / 'o r  some t > 1, 0 < 5 < 0.0leo, where 

3 = 3(x;  5, t). Then there exists Yx E W ( x ;  ~ - ~ ,  3) such that 7r(ay. (3)) is a 

closed (periodic) U-orbit in r \ G  of  length (period) a(y , , ,  3). (Here ay ,  (3) and 

a ( y . ,  3) are as in Section 1.) 

I l n 3  and z = xa ( r ) .  Then  Proof: Let r = 

7zu(1)  = za ( r )h (b )  E W ( z ;  5, t /3 )  

for some e ~ 3' E F. It follows from the definition of p and d that  we can 

assume z E E i ,  3' E Fi for some i --- 1 , . . . ,  n. Then  (2.3) holds with p = 1 and 
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! < Iql ---- tP er + be-TI < 2, since Irl, Ibl < 2& This implies that sin 2 8 < 4~ and 

hence 

(2.13) either 181 < v ~  or I ~ - O  I < v ~  

1 
if 6 is sufficiently small. Then cos 8 sin 8 > ~q and hence 

-~zu(v') • w(~;  a , , /~)  

for some p' _> 0 by (2.5). It follows then from (2.4) and the definition of fl that  

7 = 7i, P' = 1. But z = z'r(8) for some z' with 7iz 'u(s)  -- z' for some s > 0. It 

follows then from (2.13) that there is y~ C W(z; V q ~ )  such that ,~(~=(1)) is a 

closed U-orbit in F \ G  of length c~(y=, 1). This completes the proof of the lemma 

if we set Yx = y , a ( - r ) ,  t 

P roof  of Theorem 3: 

closed orbit then 

It suffices to prove that if z E P \ G  = X and xU is not a 

Ss(*,*) - ,  A ,  when * - ,  oo 

for every bounded uniformly continuous function f on X. 

So let 0 < ~ < 0.01~0 and f as above be given. Let e = g C f  I and let o2i(e ) be 

as in the proof of Theorem 2. Let 0 < 6 < [min{e,w/(el°)}p °° be so small that 

~r is one-to-one on V(z; ~, 1) - ¢ l ( W ( z ,  6)) for every z E G for which ~r(z)U is a 

closed U-orbit  in X of length 1. Let 

, = ~(,~(v, .(~.~(a)/2,1))  

where Vr(z; *, 1) is as in the proof of Theorem 2 and 0 < ~(~) < $ as in Corol- 

lary 2.1. 

Since the action of U on (X, v) is ergodic, there are 10 > 1 and Y C X with 

v (Y )  > 1 - 0.177 such that 

ISs (v ,* )  - : , l  < ~1o 

for all y E Y, t _> 10. Arguing as in the proof of Theorem 2 we conclude that if 

zU is a closed orbit of length l _> 510 then 

(2.14) ISi(z, l) - ]~l -< 295. 
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Since xU is not a closed orbit it follows from (2.3) that there exists to >_ 10/0/e a 

such that 

(2.15) ~(x; 6, t) > 1010/e 4, 

for all t >_ to. We claim that 

(2.16) 

for all t >_ to. 

Indeed, let t > to. 

so • [0, t] such that 

I S ~ ( ~ , t )  - f~ l  < 

It follows from (2.15) and Corollary 2.1 that there exists 

Z(x,; ~(6),t) > 1010 

for all s e [0,(1 - *%0] U [(1 + ~=)*0,(1 - ~=)t] = T. To prove (2.16) for t it 

suffices to show that for each s E T there is lo < t(s) <_ t - s such that 

(2.17) ISs(~, t (~) )  - f , I  < ~ .  

So let s E T. If r is one-to-one on Vt-s(X, ,  ~(5)/2, t), Xs E ~r-' {Xs} then arguing 

as in the proof of Theorem 2 we obtain 

ISs(z,, t - s ) - f , I  < ~. 

We set t(s) = t - s in this case. Now assume that ~ is not one-to-one on 

V t - , ( x ~ , ~ ( * ) / 2 , t ) .  Then there are r E [0,t - s], y E ¢ r ( W ( x ~ , ~ ( 6 ) / 2 , t )  such 

that 

3'yu(p) E e r ( W ( x , ,  ~(6)/2, t) 

for some p > 0 and some e ~ 1' E F. This implies via (2.8) that 

-yx, u(~') • W(x , ;d6) , t )  

for some 0 < r '  < (t - s)(1 + es). This gives 

1of0 < ~(x,; d6),t) < (t -~)(1 +~) .  

Set p(s) = 3(x~, ~(6), t). It follows then from Lemma 2.2 that there is y~ • 

W(x~,  ~ ,  p(s)) such that %,  (p(s)) is a closed U-orbit  of length a(y , ,  p(s)). 

Set t (s)  = p(s) if p(s) < t - s and t(s) = t - s if p(s) > t - s. Relation (2.17) now 

follows from (2.14) and our choice of 6. This completes the proof of the theorem. 

I 
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D) COMMENTS. Our proofs of Theorems 1, 2, 3 and 5 used the fact that  U is 

a horospherical subgroup for a(r) ,  7" > 0, i.e. U = {g e G: a ( -n~)ga (n~)  --, e, 

n ~ oo}. This is not necessarily true if U is a one-parameter unipotent subgroup 

of a general Lie group G. Because of this, our proofs can not be extended to 

the general case. In Section 3 and Section 4 (which handles arbitrary discrete 

I') we give proofs of Theorems 3 and 2, which can  be extended to the general 

case. This was done in JR, 1-4]. Note that an analog of Theorem 2 for general 

horospherical U is given in [R1, Theorem 4] (see also [D1] and IV]). 

3. A b e t t e r  p r o o f  of  T h e o r e m  3 

In this section we give a better proof of Theorem 3, which incorporates in a simple 

form some of the ideas used to prove Theorem C (see JR4, Proof of Theorem 2.1]). 

The proof uses Theorem 2. 

Let I' be a lattice in G = SL(2, R). We will need the following theorem. 

THEOREM 3.1: Given ~ > 0 there is a compact K(¢) C X = P\G such that i f  

U = {u(s): s 6 R} is a one-parameter unipotent subgroup of G, z 6 X and zU 

is not a periodic orbit then 

Z' 
(3.1) XK(.)(zu(s))ds > (1 -- e)t 

for a/I t > to and some t0 = to(z, U, ~) > 0, where Xs¢ denotes the characteristic 

function of K.  

A general version of this theorem was proved in [D2, Theorem 3.5] and used 

in [R4, Proof of Theorem 2.1]. 

Let U = {u(t) = exptu: t E R}, u E ~ be a one-parameter unipotent subgroup 

of G and v fi O. Then [ Ad,,(,)(v)[ 2 is a polynomial in s of degree < 4, where 

Adg(v) = ~t(g-l(exptv)g)[,=0, g E G. This fact plays an important role in the 

proof of Theorem 3.1. Indeed, we prove the following 

LEMMA 3.1: Let P(k)  be the set of all t ea / (o r  complex) polynomials of degree 

< k. Then given ~ > 0 and $ > 0 there is 0 < 6 = ~f(e, 0, k) < 0 such that if 

p and 

(3.2) o < < t} = o 
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for some t > 0 then 
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A{s • [0,t]: [P(s)[ >_ 6} > (1 - e ) t  

where A denotes the length measure on R with A([0,t]) = t. 

Proof: Using a standard scaling argument it suffices to assume that t = 1 in 

(3.2). Let C([0, 1]) denote the Banach space of all continuous functions on [0, 1] 

with the supremum norm. For f E O([0, 1]), a >_ 0 and e > 0 define 

A(f,c~) = {x E [0,1]: If(x)l _> ~}, 

~ , ( f )  = sup{a > 0: A(A(f, a)) _> 1 - e}. 

It is easy to see that I~e(f) - ~ Je ) [  -< I f - el for all f , 9  E C([0, 1]) and hence 

~e( f )  is continuous on C([0, 1]). Now let 

P0 = {P  E P(k): I PI I0,1] = 0}. 

Then P0 is a closed and bounded subset of the finite dimensional subspace P(k)  C 

C([0, 1]). Hence Pe is compact and hence ~ ( P )  > 60 for all P E P0 and some 

60 = 60(e, 8, k) > 0. This completes the proof. | 

Now l e t F = F - { e }  and f o r x E G l e t  

,x(x) = do(x,  t x ) .  

Also let E i ,7 i ,  i = 1 , . . . , n  and p )> 0 be as on page 10. For 0 < r < p, 

i = 1 , . . . , n  define 

Ei( r )  = {x E El: A(x) _< r} C Ei(p) C Ei. 

Now suppose that U is a one-parameter subgroup of G and 

dG(xu(s) , ' r ixu(s))  < 0 

for all 0 < s < t, some t > 0, x E E i ,  i E { 1 , . . . , n }  and 0 < 0 < 0.5p. Then 

(3.3) xu(s)  • E,(e),  d o ( x u ( ~ ) , ~ x u ( ~ ) )  = A(xu(~))  

for all 0 < s < t by the definition of Ei and El(0). 
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It  follows from the definition of Ei  that  if x E G and A(x) <_ p then there 

is a unique i E { 1 , . . . , n }  and "Yx E r such that  -~x x E El. Then defining 

7x = "YxlTi'Yx we get 

~(~xx)  = d A - ~ x x , - r ~ x )  = d~(x, TxX) = zX(x). 

This implies via (3.3) that  if 

do (xu ( s ) , 7~xu( s ) )  < 0 

for all 0 < s < t and some t > 0, x E G, 0 < 19 < 0.5p then 

(3.4) d a (xu(s) ,  %,xu(s) )  = A(xu(s ) )  

for all 0 < s < t. 

Proof of Theorem 3.1: Let e > 0 be given and let 0 < 6 < min{1,0.5p} be so 

small that  if d G (x, y)  < 219 for some x, y E G then y = x exp v for some v E O 

with I vl = d~ (x ,y ) .  Let 0 </~2 =/~(0.1~,02/4,4) < 02/4 be as in Lemma 3.1 

for k = 4. Let 

K(e)  = {x E X: A(x)  >_ *, x E 71"-l{x}} 

- - a  compact subset of X.  Now let U be a one-parameter unipotent subgroup of 

G and z E X.  Suppose that  zU is not a periodic orbit. If  zu(s)  E K(e)  for all 

s > 0 then we are done. Otherwise there exists s0 _> 0 such that  zu(s0) $ K(e).  

Then there is i E {1, . . .  ,n} and y E Ei such that  7r(y) = zu(s0) and 

d~(y ,71y)  < ~. 

Then 7iY = y e x p v  for some v E ¢~ with I vl < (~ and expv  ~ U since zU is not 

periodic. Hence there is r > 0 such that  

da(yu(7-),7iyu(7-)) = 0 
(3.5) 

do(yu(s),~liyu(s)) <_ O 

for all 0 < s < 7-. Hence 

(3.6) A(w)  =/9 where w = yu(7-) 

by (3.3) and (3.5). Now let t > 1. Define 

F ( w , t )  = {s e [0,~]: a ( w u ( s ) )  < ~} 
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a n d  let  81 = sup  F ( w ,  ~), w 1 --~ w u ( s  1). Then 

do(w,,'yw,W,) < 

where 7w, is as in (3.4). It follows from (3.6) that 

d~(w,7 . . ,w)  > 0.5o. 

Hence there is 0 < r] < s] such that 

d o ( w , u ( r ,  - s , ) ,  "rw, w , , , ( r ,  - s , ) )  = 0.50, 

do(w,u(- , ) ,~w,W,U(-S) )  < 0.50, 

for all s E [0,s, - r~]. It follows then from (3.4) and Lemma 3.1 that 

~{s e [o,s, -~,]: w, u(-s) e K(e)} > (I -o  le)(s, -~,)  

where K(e)  = ~r-](K(e)). Hence 

A{s E I,:  wu(s )  E K(e)} _> (1 - e)A(I,) 

where/1 = It1, t]. By repeated application of this argument we obtain sl > s2 > 

"'" > S m >  O, rl > r2 > "'" > rm -~ O~ Sk+l < rk < Sk, k -~- l , . . . , m  - 1 such 

that 

sk = sup(F(w, t )  rl[O, rk_,]), ro = t, k = 1 , . . . , m  

and 

A{s e h :  wu(s )  E K(e)} >_ (1 - 0.1e)A(h), 

h = [,k,rk-,], [0,t] = (J h .  
k=l  

This implies (3.1) if we set to = 100(s0 + r ) /c .  This completes the proof of the 

theorem. 1 

Now let x E X be fixed. Let C0(X) denote the Banach space of all real 

continuous functions on X vanishing at infinity with the supremum norm and let 

C~(X) denote the dual of Co(X). For t > 0 define Tz,~ E C~(X) by 

 fo' T,.,(f) = ~ I(xu(s))ds, f e Co(X). 
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Then I Tz,tl ~ 1. Let Tz denote the set of all limit points in the weak .-topology 

on C~(X) of the set {Tx,t: t > 0} when t T oo. For each T E 7"z there is a unique 

Borel measure PT on X such that 

T( f )  = / x  fd#T'  f E Co(X). 

It is clear that  #T (X) _< 1 and #T is U-invariant. Write M(x,  U) = {#T : T E T~ }. 

For each/~ E M(x,  U) there is a subsequence t ,  = t,,(l~) T 0% n --* oo such that 

T( n, f) : Tx,,.(f) -*/x 

for all f E Co(X). 

The proof of the following lemma uses standard argmnents and can be found 

in JR4, Proposition 1.2]. In this lemma A~ denotes the ~-neighborhood of A C X 

in X. 

LEMMA 3.2: Let /~ E M(x ,U)  and let 0 < tn = tn(#) T oo be as above. Let 

K C X be a compact subset of X.  Then, given e > 0 there is ~o = 6o(e,K) > 0 

such that 

~(K) <_ l iminf T( t , ,  Xr, ) <- lira supT(tn,  XK, ) <- # ( K ) +  e 
n - - ~ O 0  

for all 0 < 6 < 60. 

This lemma implies via Theorem 3.1 that #(X) = 1 for all # E M(z,  U). 

Let # E M(x ,U)  and let Y~, C xU be the support of/z. Let {(C(y),#c(~)): y E 

Y] } be the ergodic decomposition of the action of U on (Yj,, #), Y~ C Yl,, #(Y~) = 

1. Let t~(y) denote the support of/zc(y ) and let ( ,  : {C'(y): y E YA}. It follows 

from Theorem 2 that if C(y) E ~, then either C'(y) :- X and #c(y) is G-invaxiant 

or ¢'(y) = yU is a periodic orbit of U with #c(y) being the normalized length 

measure on yU. Let ( ,  = {C E ~: C is a periodic orbit of U}. 

Proof of Theorem 3: It suffices to prove that if/~, = #(U{C: C E ~,}) > 0 for 

some # E M(x,  U) then xU is a periodic orbit. 

Indeed, let fl : fl~, > 0 for some/~ E M(x,  U). Let g = K(0.01/~) be as in 

Theorem 3.1 and let D be a compact subset of O{C: C E (~,} with #(D) > 0.9ft. 

It follows then from (1.1) that there exists 7 > 0 such that Da(7) C X - K.  

Lemma 3.2 implies that 
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for all small 6 > 0. Hence 

lira inf Tz,t,~-2. (Xw,(,)) s ) > 0.9~ 

for all small 6 > 0, where z = xa(r) .  This implies that relation (3.1) does not 

hold for z and ~ = 0.01/~. Then zU must be periodic by Theorem 3.1. Hence so 

is xU, since a('r) normalizes U. This proves our theorem. | 

4. A r b i t r a r y  homogeneous spaces of  SL(2, R) 

A) CLASSIFICATION OF INVARIANT MEASURES FOR HOROCYCLE FLOWS. In 

this section we shall prove Theorem 2. Thus we assume that r is an arbitrary dis- 

crete subgroup of G. Since G is unimodular, F \ G  carries a a-finite G-invariant 

Borel measure v. 

The central role in the proof of Theorem 2 is played by a dynamical property 

of U, called the R-property which was first introduced in [R5]. To state it we 

turn again to W(x ;  6) defined in Section 1 for a small 0 < 6 < 0.1. It follows 

from (2.8) that if y = xa(r )h(b)  • W(x ;  6) and bs < e 2~ for some s • R then 

y u ( a ( y ,  s)) = xu ( s )a ( r (y ,  s))h(b(y, s)) 

where r (y ,  s), b(y, s) and a (y ,  s) are as in (2.8). Relations (2.8) imply the fol- 

lowing statement. 

THE R-PROPERTY FOR HOROCYCLE FLOWS. There exist 0 < T/< 1 and C > 1 

such that if 

max{i~'(y,s)[: 0 < s < t} = Ir(y, t ) l  = 0 

for some t > 1, y • W(x ,6 ) ,  10g < 0 < 0.5 then 

0 C0 
(4.1) 5 - < IT(y, s)l _< 0, Ib(y, s)l <_ - - t  

for all • [(1 - t]. 

This property has been extended to simply connected unipotent subgroups of 

general Lie groups G in [Ri]. It plays a crucial role in the proof of Theorem B. 

Now let # be an ergodic U-invafiant Borel probability measure on X = F \ G  

and let A = A(#) = {g • G : the action of g on X preserves #}. Then A(#) is a 

closed subgroup of G and U C A(#). Let 

q = {a ( r )u ( , ) :  r , ,  • n } .  

Then Q normalizes U. 
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LEMMA 4.1: Suppose that Q - A  ~ 0. Then there exists Y C X, #(Y) = 1 such 

that Y n Yq = 0 for a/1 q 6 Q - A. 

Proof." First let us show that for every q 6 Q - A there is Xq C X,  #(Xq) = 1 

and e(q) > 0 such that 

(4.2) Xq n Xqg = 

for all g E qQ~(q)(e) = Q,(q)(q), where Q~(e) denotes the e-ball at e in Q. 

For q E Q - A define 

#q(E)  = /~(Eq)  

for every Borel subset E C X. It is clear that /~q is an ergodic U-invariant 

measure on X,  since q normalizes U. Also/~q ~ #, since q ~ A. Then ~uq is 

singular with respect to/~ and hence there exists Eq C X such that 

#(Eq)  = 1 and #q (E , )  = #(Eqq)  = 0. 

Let Eq = Eq - Eqq. Then/~(E~) = 1 and 

Eqngqq= O. 

Now let K be a compact subset of Eq with # (K)  > 0.99. Then there is e = 

e(q) > 0 such that 

(4.3) dx(g,  g q )  _> e. 

Since U acts ergodically on (X, #) there is Xq C X,  #(Xq) = 1 such that 

(4.4) Sx~c(X't) = 7 XK(Xu(s))ds --+ #(K) ,  t -+ oo 

for all x E Xq. We claim that (4.2) holds for all g E Q~(q)(q). Indeed, suppose 

to the contrary that 

xanx.g#0 

for some g E Q,(q)(q). Then there is x E Xq such that x = yg for some y E Xq. 

We have g = a ( r )u ( r )  for some r,  r • n .  Also yu(s)g = xu(se -z ')  for all s • R. 

It follows from (4.4) that there is t > 1 such that 

Sxx (y, t) >_ 0.9, 

SxK (z, e-2"t) >_ 0.9. 
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This implies that there is 0 < s < t such that 

yu(s) = z E K and zg E K. 

But zg = zqp for some p E Qt(q)(e). Hence 

dx(zg, zq) < e(q) 

in contradiction with (4.3). This proves (4.2). 

We have 
OO 

Q - A  C U Q'(q,)(qi) 
i=1 

f o r  s o m e  q i  E Q --  A ,  i = 1, 2, . . . .  L e t  

O O  

Y = N Xq,. 
i=1 

Then p(Y) = 1 and 

Isr. J .  Math .  

Y A Y g = 0  

for all g E Q - A by (4.2). This completes the proof of the lemma. | 

A more general version of Lemma 4.1 is proved in [R1, Theorem 2.2]. 

THEOREM 4.1: Suppose A ~ A(p). Then p is supported on a closed orbit of U. 

Proof: Since A ~ A and A is a closed subgroup of G there is 0 < 8 < 0.1 such 

that 
a(r) ¢ A 

for all 0 < Irl _( e. W e  can ~ s u m e  that e < 6o(0.1) where ~o(~) is as in (1.2). 

Thus a(v) E Q - A  for all 0 < Irl _< 0. Let Y c X, p(Y) = 1 be as in 

Lemma 4.1 and let 0 < 7/< 1 be as in the R-property. Then there are a compact 

K C Y, #(K)  > 1 - 10-37} and 6 = ~(K) > 0 such that 

(4.5) dx(K, Ka( r ) )  > 

for all 0/2 < I¢1 < 0. Since the action of U on (X, p) is ergodic, there are F C X,  

p(F)  > 0 and to _> 1 such that 

(4.6) SxK (x, t) _> 1 - 10-2~ 
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for all x E F,  t > to. 

Nowlet 0 < ~ < 0.016 be so small that ifmax{]T(y,s)I:  0 < s < t} = [v(y,t)] = 

8 for some y E W(x ;~) ,  x E G and t > 1 then 

t ~ 10t0 and COlt < 0.015. 

Here C > 1 is as in (4.1). We claim that i fx ,  y e F and dx(x ,y)  < ~ then 

y e Q(x; ¢) = {xa(r)u(,):  H,  < ¢}. 

Indeed, suppose to the contrary that y ~ Q(x; ~). We can assume without loss 

of generality that y = xa(r )h(b)  E W(x; ~). Then b ¢ 0. It follows then from 

(2.8) that there is t = t(y) > 0 such that Iv(y,t)l = 6 = max{iv(y,s)l: 0 < s < t}. 

Then t > to and a(y,  t) >_ to by our choice of ~ and 8. It follows then from (4.6) 

that 

SxK (x, t) _> 1 -- 0.01y 

This implies by our choice of ~ that there is s • [(1 - T/)t, t] such that 

xu(s) • K and xu(s)a(r(y, s))h(b(y, s)) • It'. 

Then 
8 

< IT(y,~)l < 8, Ib(y,~)l < Ce / t  < 0.1~ 

by the R-property. This gives 

dx(K,  g a ( r ( y ,  s))) _< 0.15 

in contradiction with (4.5). 

Now let x • F f-I Y be such that #(F f30e(x)) > 0 for all ~ > 0, where O~(x) 

denotes the v-ball at x in X.  We have just shown that 

n Y) > 0. 

This implies via Lemma 4.1 that 

Q(x; ~) N Y c xU 

since x • Y. Hence /z(xU) -- 1, since U acts ergodically on (X,/~). This 

completes the proof of the theorem. I 

Now we shall prove the following 
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THEOREM 4.2: Suppose A C A(#). Then F is a lattice and # is G-invariant. 

To prove this theorem we need the following lemma. 

LEMMA 4.2: Suppose A C A(#). Then the action of A on (X,#)  is mixing. 

Proof" It suffices to show that 

f x  ~P( x ) f ( xa(-7- ) )d# --~ O, when -¢ 7" CX3 

for any two bounded uniformly continuous functions qo and f on X with ft, = 

f x  fd# = O. 
So let e > 0 be given and let 0 < 5 < 1 be such that 

(4.7) [qa(x) - qa(z)[ < 

for all x,z  E X, dx(x ,z)  < 5. Since the action of U on (X,/~) is ergodic there 

are to > 1 and Y C X,/~(Y) > 1 - e such that 

(4.8) ISi(u,t)l < e 

for all y E Y, t > to. 

Now let ro > 0 be such that e-2r°to = 6 and let 1" > 7-o. Write 

r ~  = Ya(7- ) ,  i ' (Y~)  = ~ ' (Y)  > 1 - 

since a(7-) E A(p). We have using (4.7) 

I(r) = I x  ~P(x)f(xa(-7-))dtz 

= ½fo' (Ix ~'(x"(8))y(x'(~)a(-7-))d~') as 

= ~ .(x)[s'[ I Jo ['" f(xa(-r)u(s))ds] d. + .1 

= fy. ~ ( y ) & ( y . ( - . ) , . . ) d r  + ~, + ~. 
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where s~ = 5e 2~ _> to, y a ( - r )  • Y whenever y E Y~ and I~l, 1~21 ~ c ,~  for some 

C1 > 0. This gives via (4.8) 

lz(T)l _< c~ 

for all ~" > v0 and some C > 0. This completes the proof of the lemma. I 

A more general version of this lemma is proved in [R1, Theorem 5]. 

Thus we assume that A C A(#). Then ~ is preserved by the action of Q = 

{a(r)u(s): r, s • R} on X. 

Now let x • X and H(x;if) = {xh(s): Isl _< 6}. If 0 < ~ < 0.1 is sufficiently 

small then for each y • Q(x; 6) and each z • H(x; 8) the intersection H(y; 108) O 

Q(z; 108) consists of exactly one point p = p(y, z). Define 

H(y) = H(p) = {p(y, v): v E H(x; g)}, 

Q(z) = Q(p) = {p(w, z): w E Q(z; 6)}, 

B~(~)= U H(~). 
ycQ(x;6) 

We have 

B , ( x ) =  U Q(q )=  U H(r)  
qeH(p) reQ(p) 

for all p E B~(x). The set B~(x) is similar to the set U{¢,(W(x; 6)): I s] < 6} dis- 

cussed in Section 1. We can assume without loss of generality that #(B6/2(x)) > 0 
and r is one-to-one on the 106-ball O10~(x) at x E z'-l{x} in G. 

Define 

a = u{B~(x)ak: k • Z). 

Then p(Ft) = 1, since the action of a on (X, ~u) is ergodic. Also the action of a 

on (F/, v) is measure preserving. Let ~ be the Borel measure on X defined by 

~(D) -- v(O n f~) for every Borel subset D C X. 

LEMMA 4.3: 1) u(~) < oo; 2) # = ~/v(f~). 

Proof'. Let f be a continuous function on X with compact support. Since the 

action of a on (X, #) is ergodic, there is a subset C I C B~(x), #(Cf) = #(B6(x)) 

such that if y E C S then 

n--1 

(4.9) ss , . (y)  = ~ / ( y a - ' ) / n  --* f .  = / x / d , ,  n ~ oo. 
i=0 
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Let 01 C B6(x),  # ( 0 I )  = la(B,(x))  be such that if z • C! then 

A(C I n Q(z ) ) /A(Q(z ) )  = 1 

where X denotes a Q-invariant measure on zQ. Pick ~ • CI and define 

B I = U{H(y): y • C I n Q(~)} c B, (x ) ,  

f~l = U{B/ak: k • Z} C f~. 

We have v ( B l )  = v(B6(x))  and v(f~l)  = v(f~). Now let z • BI .  Then z • H(y )  

for some y • C$. We have 

d x ( z a - " , y a  -n)  --+ O, n --+ oo. 

This and (4.9) imply that 

Sl ,n(z  ) -+ f~, n ---+ oo 

for all z E B I, since f is uniformly continuous. Also 

(4.10) Ss,,(~, ) --+/., ,~ -~ co 

for all w E f~l" Now let f be nonnegative with ft, ~ 0. It follows then from the 

Fatou's lemma that 

f~,v(fl)= L f~,dv<_n_oolim L S L ' * d v = L f d v < ° ° "  
! ! 

This proves that v(~2) < oo. Now we use (4.10) and the Lebesgue Dominated 

Convergence Theorem to get 

for every continuous function f on X with compact support. This proves that 

= m 

Proof of Theorem 4.2: In view of Lemma 4.3 it remains to prove that v = ~. 

To do so it suffices to show that for every p • X 

v(O0.,~(p) - fl) = 0 
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where O4p)  = vO4e) .  Define 

= {w • ~: wa-"  • B6/2(x ) for intinitely many n • Z+}. 

We have p (~ )  = 1 and v(~)  = v(12), since p = ~ = ~/v(12) and the action of a 

on (f~, p) is ergodic. If w • ~ then H(w; 106)a-"  C H(y) for some n • Z + and 

some y • B6(x). This implies that 

H(w, 106) C fl 

for all w • ~, since ~ is a-invariant. In fact, wH C ~ for all w • ~. Now let 

fi = {w • a: A(ft n Q(w; 106))/A(Q(w, 106)) = I } .  

(4.11) = v (a )  

since b = p is Q-invariant. It follows now from the definition of ~ that if w E l~ 

then 

(4.12) v(B~(w) n ~) = v(B6(w)). 

This implies via (4.11) that 

v(B6(w) O fi) = v(B6(w)) 

for a l lw  E ~. Now let p E X. Then we can find x = w l , . . . w ,  such that 

wi • B6(wi-1) n ~, i = 2 , . . .  ,n and Oo.16(p) C B6(w,). This implies via (4.12) 

that 

- n)  = o 

and proves that v = ~. I 

A similar proof for a more general case is given in JR2, Section 7]. 

P roof  of  Theorem 2: The theorem follows from Theorems 4.1 and 4.2. I 

We have 
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B) ORBIT CLOSURES FOR HOROCYCLE FLOWS. In this section we prove Theo- 

rem 4. Thus we assume that r is a discrete subgroup of G and r is not a lattice. 

Suppose that x E r\G = X and xU is compact in X. Let M(x,U) be as in 

section 3. Then/~(X) = 1 for all/~ E M(z, U). 

Proof of Theorem 4: Let # E M(x, U) and let Y~, C xU denote the support of 

#. By Theorem 2 there is y E Y~ such that yU is a periodic orbit. Since xU is 

compact, there are r > I and ¢ > 0 such that 

(4.13) dx(yUa(r ) ,  xU) > e. 

Now suppose to the contrary that xU is not periodic. Since yU C xU there are 

t > 0 and z E yU such that 

p = xu(t)  = za(r)h(b)  e W(z;  6) 

for some IT[, [b] < 6 and b ~ 0, where 6 > 0 is chosen so small that 6 < 0.0lee - r .  

It follows then from (2.8) that if e r - s b e  - r  = e r then 

-- ,', lb(y, )l -< O.le. 

Then 

dx(pu(a(y ,  s)), zu(s)a(r))  < 0.1~ 

in contradiction with (4.13), since zu(s) E yU. This completes the proof of the 

theorem. | 
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